
A0-AI24 387 SHAREDSCACHE ORGANIZATION FOR MULTPLE-STREAM COMPUTER 1/
SSEM (U) ILNOIS'UN IV AT URBANA COO NATE 0 CENC
LAR YEH JAN 81 R-904 N00039-80-C 0556

UNCASFE / 9/2

" ~ L 1.

L 6

11111..25 111111.4 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

RE~ -" 44 JANUARY, MP UKLU4

~51CORDINA TED SCIENCE LABORATOR

i300

cq SHARED CACHE -ORGANIZATION
* FOR MULTIPLE =STRJEAM

1c

'tUL

$0OF IN;of$ AT URBANAMDN

Ga

SECURITY CLASSIFICATION Of THIS PAGE (When Dao ntered)
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

t R R BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

SHARED CACHE ORGANIZATION FOR MULTIPLE-STREAM Technical Report
COMPUTER SYSTEMS 6. PERFORMING ORG. REPORT NUMBER

R-904; UILU-ENG 81-2235
7. AUTHOR(e) 6. CONTRACT OR GRANT NUMBER(s)

N00039-80-C-0556
CHI-CHUNG YEH N00014-79-C-0424

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Coordinated Science Laboratory
A EA& WORK UNIT NUMBS

jUniversity of Illinois at Urbana-Champaign
Urbana, Illinois 61801

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

VHSIC Systems, US Navy January, 1981
Joint Services Electronics Program 13. NUMBER OF PAGES

260
14. MONITORING AGENCY NAME & ADDRESS(#[different from Controlting Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thil Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it dlte, :.t from Report)

1
1S. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reverse aide it necessary end Identify by block number)

Cache memories, parallel memories, pipeline processors,
parallel processors, multiprocessors, memory interference,
performance evaluation, simulation

4 20. ABSTRACT (Continue an reverse side It necesaery and identify by block number'

- Organizations of shared two-level memory hierarchies for parallel-
pipelined multiple instruction stream processors are studied. The

multicopy of data problems are totally eliminated by sharing the caches.
All memory modules are assumed to be identical and cache addresses are
interleaved by sets. For a parallel-pipelined processor of order (s,p),
which consists ofop parallel processors each of which is a pipelined
processor with degree of multiprogramming, s, there can be up to ap cache

DD I FORM 1473
IN 73SECURfITY CLAS31FICATION OF THIS PAGE

r
t*%an Data Fntorsd)

SICURITY CLASSJFICATION OF THIS PAGE(RWhn Data Ent.r")

20. ABSTRACT (continued)

/requests from distinct instruction streams in each instruction cycle.
The cache memory interference and shared cache hit ratio in such systems
are investigated.

The study shows that the set associative mapping mechanism, the
write through with buffering updating scheme and the no write allocation
block fetch strategy are suitable for shared cache systems. However, for
private cache systems, the write back with buffereing updating scheme and
the write allocation block fetch strategy are considered in this thesis.

Performance analysis is carried out by using discrete Markov Chain
and probability based theorems.- Performance is evaluated as a function
of the hit ratio, h, the processor order, (s,p), and the cache organization
characterized by the number of lines, 2, the number of modules per line, m,
cache cycle time, c, and the block transfer time, T. Results shows that
for reasonably large A high performance can be obtained for shared cache
with small (1-h)T. Shared-cache systems may perform better than private-
cache systems if shared cache results in a higher hit ratio than private
cache. The shared-cache memory organization is suitable for single pipelined
processor systems because of the low access interference. Access inter-
ference of shared cache systems may be reduced to extremely low levels with
a reasonable choice of system parameters.

Some design tradeoffs are discussed and examples are given to
illustrate a wide variety of design options that can be obtained.
Performance differences due to alternative architectures are also shown
by a performance comparison between shared cache and private cache for a
wide range of parameters.

O I

as[cuftiry CLASSIICATIOWN OiP THIS lPAGlrqi.. Duel aif -d)

[
V
4-

SHARED CACHE ORGANIZATION FOR MULTIPLE-STREAM

COMPUTER SYSTEMS

Accession for

NTIS GRA&I

DTIC T4

BY JU- tific1t i cn-

Chi-Chung yeh Btl.D i s t r ;- u t ; C n /

B. Eng., Chung Yuan Christian College of Awl i tY Codes

Science and Engineering, 1972 D"s !A/por~
M.S., Northwestern University, 1975 s pecial
M.S., University of Illinois, 1977

THESIS . 9,p4ct

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1981

Ii Urbana, Illinoisi

SHARED CACHE ORGANIZATIONS FOR MULTIPLE-STREAM

COMPUTER SYSTEMS

Chi-Chung Yeh, Ph.D.

Department of Electrical Engineering
University of Illinois at Urbana-Champaign, 1981

Organizations of shared two-level memory hierarchies for parallel -

pipelined multiple instruction stream processors are studied. The

multicopy of data problems are totally eliminated by sharing the caches.

All memory modules are assumed to be identical and cache addresses are

interleaved by sets. For a parallel - pipelined processor of order

(s,p), which consists of p parallel processors each of which is a

pipelined processor with degree of multiprogramming, s, there can be up

to sp cache requests from distinct instruction streams in each

instruction cycle. The cache memory interference and shared cache hit

ratio in such systems are investigated.

The study shows that the set associative mapping mechanism, the

write through with buffering updating scheme and the no write allbcation

block fetch strategy are suitable for shared cache systems. However, for

private cache systems, the write back with buffering updating scheme and

the write allocation block fetch strategy are considered in this thesis.

_ _ _ __

4

- Performance analysis is carried out by using discrete Markov Chain

and probability based theorems. Performance is evaluated as a function

of the hit ratio, h, the processor order, (s,p), and the cache

organization characterized by the number of lines, I , the number of

modules per line, m, cache cycle time, c, and the block transfer time, T.

Results shows that for reasonably large I high performance can be

obtained for shared cache with small (1-h)T. Shared-cache systems may

perform better than private-cache systems if shared cache results in a

higher hit ratio than private cache. The shared-cache memory

organization is suitable for single pipelined processor systems because

of the low access interference. Access interference of shared cache

systems may be reduced to extremely low levels with a reasonable choice

of system parameters.

Some design tradeoffs are discussed and examples are given to

illustrate a wide variety of design options that can be obtained.

Performance differences due to alternative architectures are also shown

by a performance comparison between shared cache and private cache for a

wide range of parameters.

L

-[

iii

ACKNOWLEDGMENT

The author wishes to express his deepest gratitude to his advisors,

Professor Edward S. Davidson and Professor Janak H. Patel, for their

patient guidance, helpful suggestions and invaluable friendship. The

author would also like to thank Professors B. R. Rau, J. A. Abraham

and M. Sohlanaker for their constructive discussions.

The author also wishes to thank his colleagues at the Coordinated

Science Laboratory; Joel Emer, Alan Gant, Larry Hanes, David Yen, Tim

Chou and Andy Pleszkun, for providing an intellectually stimulating

environment.

Finally, the author is grateful to his wife, Grace, for her love and

encouragement.

Ii

Ii

iv

TABLE OF CONTENTS

Page

1. BACKGROUND AND MOTIVATION 1

1.1 Introduction ... 1
1.2 Processor Organization 4
1.3 Program Behavior and Memory Hierarchies 10
1.4 Characteristics of Cache Memory Devices 15
1.5 Objectives of This Research 26
1.6 Some Related Work 29
1.7 Overview of the Dissertation 35

2. SHARED CACHE MEMORY ORGANIZATION 36

2.1 I ntroduction ... 36
2.2 Cache Memory Mapping Mechanisms 38

2.2.1 Fully Associative Mapping 39
2.2.2 Direct Mapping 42
2.2.3 Sector Mapping 44
2.2.4 Set Associative Mapping 45

2.3 Management of Cache-Miss 47
2.3.1 Replacement Strategies 48
2.3.2 Cache Block Fetch and Handling of Write-Miss.. 50

2.4 L-M Cache Memory Configuration 56
2.5 Address interleaving 59
2.6 Shared Cache Request Scheduling 66
2.7 System Configurations 71
2.8 Concluding Remarks 83

3. PERFORMANCE ANALYSIS .. 85

3.1 Introduction ... 85
3.2 Shared Cache Memory with an Implicit Lookup Table 90

3.2.1 Discrete Markov Model 91
3.2.2 Probabilistic Model 108
3.2.3 Bounds on PA(cT,p) 119

3.3 Shared Cache Memory with Explicit Lookup Tables 124
3.3.1 Discrete Markov Model 126
3.3.2 Probabilistic Model 135
3.3.3 Dynamic Hit Ratio 142

3.4 Private Cache Memories 144
3.5 Concluding Remarks 153

4. ANALYSIS OF RESULTS ... 155

4.1 Introduction ... 155

4.

v

4.2 The Effects of Block Size, Set Size and Total Cache
Capacity on Miss Ratios 162

4.3 The Effect of Operation Environment and Write Policy
on Miss Ratio ... 169

4.4 Validation of the Models 188
4.5 Effect of the Number of Cache Modules (N) on Performance 197
4.6 Effect of the Number of Lines (1) on Performance 201
4.7 Effect of Cycle Characteristics on Performance 204
4.8 Effect of the Number of Processors (p) on Performance... 206
4.9 Effect of Processor Speed on Performance 213
4.10 Effect of Miss Penalties on Performance 219
4.11 Load Through versus Nonload-Through 223
4.12 Comparisons Between Shared Cache and Private Cache 229

5. CONCLUSIONS .. 244

5.1 Summary of Results 244
5.2 Suggestions for Further Research 249

APPENDIX A A Summary for Shared Cache with An Implicit Lookup
Table .. 251

APPENDIX B A Summary for Shared Cache with Explicit Lookup
Tables ... 252

LIST OF REFERENCES ... 254

VITA ... 260

I r:
L

'I

vi

LIST OF TABLES

Page

4.3.1 The effect of simultaneous increasing both cache
capacity and number of streams on miss ratio 177

4.4.1 The effect of cache access conflict on performance
for model A (set size - block size - 8) 191

4.4.2 The effect of cache access conflict on performance
for model B (set size - block size - 8) 192

4.4.3 Performance for private cache systems (I = N) 195

LIST OF FIGURES

1.2.1 A pipelined processor of order 4 6

1.2.2 A single-stream, four-segment pipelined processor 6

1.2.3 A four-stream, four-segment pipelined processor 8

1.2.4 Configurations of parallel-pipelined processors 11

1.3.1 An H-level storage hierarchy 14

1.4.1 Functional blocks of RAM chip 17

1.4.2 Timing diagram for read cycle of RAM chip 18

1.4.3 Timing diagram for write cycle of RAM chip 19

1.4.4 Functional blocks of CAM chips 21

1.4.5 A 1-bit CAM cell 22

1.4.6 A 4 X 4 CAM memory array 24

1.5.1 Multiprocessor system with private-cache memories 27

2.2.1 Cache memory mapping mechanism: (a) fully associative
mapping, (b) direct mapping, (c) sector mapping, and
(d) set associative mapping 40

2.4.1 L-M memory organization 58

2.4.2 Bus structures of the L-M memory organization 60

vii

2.5.1 Address format for a set associative cache memory
organization ... 63

2.5.2 Address formats for two implementations of interleaving
by sets .. 63

2.7.1 Shared cache system organization 73

2.7.2 An implementation of the LRU algorithm 76

2.7.3 An implicit lookup table implemented by CAM chips 79

2.7.4(a) Shared cache with one explicit lookup table per line... 81
2.7.4(b) Shared cache with one explicit lookup table per cache

module ... 82

3.2.1.1 Line state diagram for shared cache with an implicit
lookup table and cycle characteristics (c,T) - (3,10).. 103

3.2.3.1 Line state diagram for shared cache with an implicit
lookup table and m = 1 123

3.3.1.1 Line state diagram for shared cache with explicit
lookup tables and cycle characteristics (c,T) - (3,10). 132

3.4.1.1 Memory line state diagram for multiprocessor with

private-cache systems 149

4.2.1 Effect of cache capacity on miss ratio 164

4.2.2 Effect of block size on miss ratio 166

4.2.3 Effect of set size on miss ratio 168

4.3.1 The effects of write policies, space sharing and
operating environments on miss ratio for CCOBOL and
GAUSS .. 171

4.3.2 The effects of write policies and space sharing on miss
ratio for EIGEN and ECOBOL 172

4.3.3 Miss ratio comparisons between shared cache and private
cache for workload of mixed program traces 176

4.3.4(a) Hit ratio vs. time obtained from private cache for
EIGEN and GAUSS .. 180

4.3.4(b) Hit ratio for shared cache and the average hit ratio
for figure 4.3.4(a) vs. time 181

C .

Lo

viii

4.3.5(a) Hit ratio vs. time obtained from private cache for both
the first and second trace sections of EIGEN program
trace ... 183

4.3.5(b) Hit ratio for shared cache and the average hit ratio for
figure 4.3.5(a) vs. time 184

4.3.6(a) Hit ratio vs. time obtained from private cache for EIGEN
and CCOBOL .. 186

4.3.6(b) Hit ratio for shared cache and the average hit ratio for

figure 4.3.6(a) vs. time 187

4.5.1 Effect of N on Cu for I = 4 198

4.5.2 Effect of N on Cu for A = 16 199

4.6.1 Effect of I on Cu for N = 64 and c = 3 202

4.6.2 Effect of 0 on Cu for N = 1024 and c - I 203

4.7.1 The effect of T on Cu for N - 256 and c - 1 207

4.7.2 The effect of c on Cu for N = 64 and T - 16 208

4.7.3 Effect of (c,T) on Cu for T/c - 8 and N = 256 209

4.8.1 Effect of p on Cu for N = 256 and c = 1 211

4.8.2 Effect of p on pc for n - 256 and c - 1 212

4.9.1 Effect of processor speed on performance for a constant
request rate .. 215

4.9.2 Effect of processor speed on throughout for varying
request rate .. 217

4.9.3 Effect of processor and memories speed on throughout 218

4.10.1 Effect of (1-h) on Cu for 0 - N - 256 220

4.11.1 Performance comparison between load through and nonload-
through for a fixed W = 4 226

4.11.2 Performance comparison between load through and nonload-
through for various W's and Bs 'a........................ 2275

4.12.1 Multiprocessor systems with nonpipelined processors for
(a) shared cache and (b) private cache 230

.1

ix

4.12.2 Performance comparison between shared cache and private
cache for nonpipelined multiprocessor systems 232

4.12.3 Single pipelined processor systems for (a) shared cache
and (b) private cache 233

4.12.4 Performance comparison between shared cache and private
cache for single pipelined processor with I - N and
s - 4 .. 236

4.12.5 Performance comparison between shared cache and private
cache for single pipelined processor with I = 4 and
s - 4 .. 237

4.12.6 Single pipelined processor with time-multiplexed main
memory bus for (a) shared cache and (b) private cache.. 239

4.12.7 Performance comparison between shared cache and private
cache for p - 1, s = 4, 1 - N and a single time-
multiplexed main memory bus 241

4.12.8 Performance comparison between shared cache and private
cache for p = 1, s = 4, 1 = 4 and a single time-
multiplexed main memory bus 242

.9.

i

II

CHAPTER 1

BACKGROUND AND MOTIVATION

Tntrodu±in

Despite advances in modern computer design, there will always be a

need for machines more powerful than those currently available. Although

performance may be improved by increasing the switching speed of the

electronic components, to achieve even faster computation, we must also

take new approaches that do not depend on breakthroughs in device

technology, but rather on imaginative computer architecture design. Two

architectural techniques, parallel computing and pipelined computing [I],

can be employed to enhance the throughput of a computer system.

Parallelism in various forms has appeared in several computers and has

proved to be an effective approach to performance improvement. In some

highly parallel computer systems, like the C.mmp system at

Carnegie-Mellon University [2) and the AMP-i system at University of

Illinois (3), concurrency is achieved by a multiplicity of independent

processors which execute separate instruction streams on separate data

streams. This kind of system is referred to as Multiple Instruction

Stream - Multiple Data Stream (MIMD) (4]. On the other hand, some highly

parallel computer systems, like ILLIAC IV [5), STARAN (6), and PEPE I7],

contain a large number of processors that perform the same computation on

2

a large collection of related data streams simultaneously. These are

referred to as Single Instruction Stream - Multiple Data Stream (SIMD)

(4].

Pipelining is one form of imbedding parallelism or concurrency in a

computer system. A pipelined processor consists of several specialized

subprocessors called nintz. Each segment performs a specific part of

a particular computation and operates concurrently with other segments.

Instruction stream pipelining has been successfully implemented in many

computer systems, such as IBM 360/91 (8] and Amdahl 470 V/6 [9], to

overlap the instruction execution. Another form of pipelining is the

data stream pipelining which performs the same arithmetic operation in an

overlapped fashion on a series of operands as they flow through the pipe.

Examples of these are the vector processors: CDC STAR-100 [10), TI-ASC

[11, and CRAY-i (12]. Pipelined processors appear to have an attractive

architecture for multiprocessing systems in the near future because of

their inherent cost advantage 113,14], regular structure and high pin

utilization (15) which are very suitable for VLSI technologies. A

general model and formal description of such a highly concurrent

processor organization is presented in the next section.

Despite the significant progress in semiconductor technology now

occurring, faster and larger storage will always be in demand. It has

generally been recognized that these demands cannot be fulfilled at an

acceptable cost with any single current technology, but this need can be

satisfied by a Am0= hierachy which combines a variety of technologies

with differing cost-performance characteristics. Today, some memory

hierarchy is used in almost every modern computer system from

microcomputers to large scale supercomputers. In this research, a two

level cache-main memory hierarchy for a multiprocessor system is studied.

This research is not particularly concerned with main-secondary

hierarchies or uniprocessor systems.

In a tightly-coupled multiprocessor environment, main memory is a

prime system resource which is usually shared by all the processors.

However, cache memory is generally not shared among processors. When

cache memory is used, a separate cache is usually attached to each

processor [16). In such systems, interprocessor communications are

usually required since no processor can directly address another

processor's cache memory. This kind of cache memory organization,

referred to as Drivate cachet causes the well-known m 2L

problem (or goherence problem [17)) which means more than one

nonidentical and inconsistent copy of data exists in the system.

Generally speaking, a memory hierarchy has such a coherence problem as

soon as one of its levels is split into several independent units which

are not equally accessable from faster levels or processors.

In this thesis, a new solution is proposed which eliminates such

coherence problems by sharing the cache memories among all processors.

However, care must be taken in the organization of the s ahe

memory system to avoid severe performance degradation due to gagh Mjg M

agces intrsrene caused by two or more processors simultaneously

attempting to access the same module or resoure of the shared cache

memory system. A simple way to reduce access interference is to divide

4

the shared cache memory system into several independent modules. Then

several cache requests would be able to access the cache memory

simultaneously if they all reference distinct modules. Interleaving of

the addresses among shared cache memory modules is then used to alleviate

the interference problem.

Memory hierarchy is a cost-effective approach to obtain a balance

between effective processor and storage cycles. The processor and cache

memory cycles and the data transfer rate between various memory levels

are all significant considerations for achieving balanced system design.

The data transfer rate is in turn tightly related to the cache memory

organization. The cache memory system is usually organized to meet the

cache 2 bandwidt requirements of the system. The memory bandwidth

is the rat* ac which memory can provide information and is usually

measured as words per second.

In this research, we characterize a wide variety of shared-cache

multiple-stream computer systems and describe a method for evaluating

their performance. Furthermore, the access interference problem, dynamic

space-sharing phenomena and various cache memory control mechanisms are

characterized and evaluated.

Processo Oranization

The concept and advantages of pipelined processors have been

introduced in section 1.1. A general and detailed model which describes

a multiple instruction stream multiple data stream (MIND) processor

implemented through pipelining is discussed in this section. A formal

definition of the pipelined processor model used in this research is

given below.

Defiio 1.2.1 A Diuhjneg processor 2 order A is modeled as an

ordered set of 3 segments (3 1 2..., Ss._), each of which can

simultaneously be processing a distinct step or phase of a distinct

instruction. 13

Once an instruction is initiated in the initial segment, it flows

from segment to segment for its execution, where each segment performs a

specific suboperation on a distinct phase of the instruction. It is

considered that each segment has an output latch or register to help

retain its autonomy. Figure 1.2.1 illustrates a pipelined processor of

order 4.

If successively initiated instructions are always taken from a

single instruction stream, the processor is called a single instruction

stream pipelined processor (or sometimes an overlapped machine).

However, allowing successively initiated instructions to be interleaved

from distinct instruction streams permits a single pipeline to implement

a multiple instruction stream pipelined processor. The following

definition aids in the understanding these two implementations.

D 1.2.2 The rth 2ane or ± au== a==, I(r) is a

1.

6

Figure 1.2.1 A pipelined processor of order 4.

311

Phiase t+1 X4 13

Figure 1.2.2 A single-stream, four-segment
pipolined processor.

7

sequence of instructions that require execution. Thus,

I Cr) a lr, 2r' C3r"'

where t = ith instruction from the jth instruction stream. 03

Figure 1.2.2 shows a single-stream, four-segment pipelined

processor. In this scheme, execution of instructions from a single

instruction stream are overlapped. The problems usually associated with

single instruction stream pipelined processors are the performance

degradation and control problems due to data dependencies and branch

instructions. In this research, we restrict our attention to multiple

instruction stream pipelined processor organizations in which the

performance degradation and control problems due to data dependencies and

branch instructions are absent. Figure 1.2.3 shows a four-stream,

four-segment pipelined processor. In general, s distinct streams are in

execution concurrently and if an instruction from a stream is initiated

at time instant t, the next instruction from the same stream will be

initiated at time instant t+s. Therefore, instruction execution overlap

is achieved only between distinct instruction streams and no execution

overlap occurs between instructions from the same stream.

The pipelined processor can be partitioned so that all segments take

the same time to complete their execution phases. Then in a pipelined

j. processor of order 3, a seperate instructions will be in different phases

of their execution at any time instant. Since these s instructions come

from distinct instruction streams, the degree of multiprogramming is also

7 s.

ii

8

phase t L o 1 13

phase t'4 -- 0

Figure 1.23 A, forste0 forsget ieie
processor

SI

I
J9

Defiitn LuLa One segment tim (ST1), is the time, in seconds

required by a segment to execute its distinct phase of an instruction. [

Hence if the phases of an instruction are partitioned so that it

takes T seconds to execute each phase of the instruction, then one STU

is equal to T seconds.

Pipelines in which all instructions have identical flow patterns are

termed 31 e functio pipelines. On the other hand, in a m

Dipellne, there are two or more distinct flow patterns and each

instruction may use one of these flow patterns [18). In this research,

it is assumed that the pipeline processor is a single function pipeline.

Assume that each instruction can issue one memory request per

nu in cycle (or pipelined processor cycle); where one instruction

cycle = s T seconds. Hence a pipelined processor of order s can issue

one memory request per STU and a total of s requests can be issued in one

instruction cycle. The instruction here is the = i lefined

by Strecker [19) such that each instructon issues one memory request per

instruction cycle and the instruction cycle is fixed. A pipelined

processor is then completely characterized for our purposes by s, the

degree of multiprogramming, and Ir, the segment time.

The generalized processor organization is now discussed.

"2gfinlLo.J.2 ,a A parallel-pipelined poessor 2f orer () [20) is

modeled as a set of p identical and independent, but synchronized

processors, each of which is a pipelined processor of order s. 03

[

10

Figure 1.2.4 illustrates the possible configurations of

parallel-pipelined processors. A parallel-pipelined processor is thus

completely specified for our purposes by the degree of multiprogramming,

s, the parallelism, p, and the segment time unit, m . A

parallel-pipelined processor of order (s,p) executes sp distinct

instruction streams concurrently and issues p simultaneous memory

requests per STU. From now on, all time units will be expressed as an

integer number of STUs, unless otherwise stated.

1.3 Program Behavior Memor Hierarchies

Two types of referencing behavior have been found to be

characteristic of almost all programs: temporal locality and spatial

locality [21]. Temporal locality implies a higher probability of

referencing information used more recently than that referenced a long

time ago. A high degree of temporal locality is expected from programs

with loops. Spatial locality implies a high probability of making

references in the near future to information which is close (in the

logical address space) to recently referenced information. We should

expect that programs will execute code sequentially and when branches do

occur they are usually over short forward or backward distances.

Sequentiality is a specific form of spatial locality. The principle of

sequentiality indicates that the successive information following the

information currently accessed is likely to be referenced next. This

type of behavior is expected from common knowledge of programs, i.e.

~ffi..a

I

I 1

order: (1,1) order: (s,1)

E W-
Nonpipelined Processor Pipelined Processor

order: (L,p) order: (s,p)

1 W1 ,1* -s
TW

*1 .

Parallel Parallel-Pipelined Processor

Nonpipelined Processor

£ Figure 1.2.4 Configurations of parallel-pipelined processors.

[i

12

related data items (variables, arrays) are usually stored together, and

instructions are often executed sequentially and input/output files are

usually accessed sequentially. Substantial sequentiality can also be

seen in data-base systems [22].

Some degree of temporal locality and spatial locality is inherent in

all programs. Their existence makes it worthwhile to retain in fast

access storage a subset of all the information which has been referenced

in the near past. On the other hand, prefetch or block fetch is used to

improve system efficiency by predicting the spatial locality or

sequentiality.

The sequentiality and locality of referencing behavior, commonly

found in the memory referencing patterns of computer programs, can be

used to predict which sections of a program's address space are likely to

be referenced next. Due to program locality and sequentiality, memory

hierarchy is a cost-effective approach to improving the effective storage

access cycle by prefetching information from slower to faster memory

levels before the information is actually accessed and by retaining

frequently used information in the fastest memory level. Under temporal

and spatial locality, memory hierarchies attempt to maximize the

probability that information is in the faster storages when being

referenced. Memory hierarchies then achieve the approximate speed of

small, fast storages while maintaining the approximate cost-per-bit of

the larger, slower storages with lower cost per bit. In this section,

some program behavior is discussed and a general description of memory

hierarchies is presented.

I
13

In general, an H-level paged memory hierarchy consists of a

collection of memory devices M1, M2,..., MH, a network of paths

connecting the devices, and a hierarchy management facility [231. Each

device is partitioned into physical blocks called pages. The hierarchy

management facility controls the page movement between the devices. A

reference from the processor can usually be serviced only from the

highest storage level, M1 . Thus if the desired page resides in a lower

level storage Mi, where i >1, the hierarchy management facility must

bring that page up to M 1 for serving a request. Figure 1.3.1 illustrates

an H-level storage hierarchy. A storage hierarchy is called a in

storage hierarchy if the only paths for moving pages down the hierarchy

are direct paths from each level, Mi to the next lower level, Mi+l, where

i=I, 2,..., H-I. Since we only consider a two-level cache-main memory

hierar..hy, our memory hierarchy is a linear storage hierarchy.

For a two-level cache-main memory hierarchy, information is usually

fetched to cache memory on a demand basis whereby, when a datum is

referenced and is found to be absent from the cache (called a SW), it

is copied from the main memory to cache memory. On the other hand, a

reference is called a = if the desired datum is found in the cache

memory. The m ratio is the fraction of all cache memory references

resulting in a miss. Similarly, the = ratio is the fraction of all

cache memory references resulting in a hit.

The locality property of program behavior is usually considered

during hierarchy management design in an attempt to maximize the hit

ratios. For example, in the case of a paged main-secondary memory

I.

14

processor

storage
NI1 level

M 2 =

Figure 1.3-1. An H-level storage hierarchy.

15

hierarchy, the working set replacement scheme [24] performs well because

it takes advantage of program locaility. However, it is known that many

factors can affect the performance of a memory hierarchy. In addition to

program behavior, performance is also a complicated function of each

memory level organization, the capacity and cycle time of each memory

device. A more careful and detailed study of shared cache-main memory

hierarchy will is presented in chapter 2.

1.4 Characteristics o1 Cache Memor Devices

In order to achieve the speed requirement of a cache memory system

design, semiconductor memories are usually employed. Two types of

semiconductor memories, namely landom Access Memory (RAM) and ontent

Addressable Memory (CAM) are normally used Ln the synthesis of cache

memory systems. With today's semiconductor technology, RAM chips can

provide high-speed operation comparable to the processor speed.

However, due to the inherent necessity of mapping pages among the

levels in a memory hierarchy, intensive searches are usually executed for

each memory reference to determine the physical location of the desired

information. Searching is time-consuming in a RAM system because serial

searching must be employed. CAM devices provide capability for parallel

searching which allows mapping table lookup in one memory cycle. To

obtain a high-performance cache memory system, mapping information is

often stored in an a lookuo table (or cache dir) in CAM

devices rather than RAM devices. In this section, the characteristics of

.j -
r.

16

both RAM and CAM chips are discussed.

Typically, RAM chips consist of five functional blocks as shown in

figure 1.4.1. They include an address register and decoder, the storage

cells, and the input and output buffers. In some memory chips, the

address register and the output data buffer are not fabricated on the

memory chip. However, with recent developments in LSI technology, the

cost of fabricating these buffers on the memory chip is insignificant.

Let t and t be the chip select pulse width and the address pulse

width respectively. Furthermore, tdi, and t denote the data input

pulse width, the write enable pulse width and the data output pulse

width, respectively. For simplicity, assume that the chip select and

address signals are gated into the chip simultaneously. Simplified

typical timing diagrams for the read cycle and the write cycle of the RAM

chips are shown in figure 1.4.2. and figure 1.4.3, respectively.

Dnition 1.4. The memory gcyle, tc, is the time that a memory chip

remains busy after a memory operation is initiated. For a read memory

operation, the cycle is called the read M fc, trc. Similarly, for

a write operation, it is called the write memory cycle, twc.

D 1.4.2 The memory 3 time, tac , is the time duration

between a memory operation being initiated and the output data becoming

available.

17

Rood/ Write

" Address Address Address Address Word RWI Data OtData
" Input Register Lines Decode Select Matrii ufo u

Select -gl I

InI

Figure 1.4.1 Functional blocks of RAM chip.

18

3Addr*Ss Address Valid

I led'

.Jatc Out toUt

tee t.O

Figure 1.4.2 Timing diagram for read cycle of RAM chip.

19

$ Address Adrsra

'9 Data In np
I ~Valid

Figure 1.4.3 'Timiug diagram for write cycle of RAM chip.

20

Definition 1.4.3 The address t tie, ta, is the minimum time

duration that the address must be maintained at the input to the memory

chip for a successful memory operation. D

A typical CAM chip also consists of five functional blocks as shown

in figure 1.4.4. These include the input/output buffers and mask

register, the storage cells and select circuit. In a RAM the information

selected for reading or writing is identified by means of an explicit

address. However, in a CAM the selection is done on the basis of the

contents of the storage cells. Usually, each unit of stored information

is a fixed-length word. Any subfield of the word may be chosen as the

key. The mask register selects bits to be compared and the key is

pattern of 1 and 0 bits in selected key positions. The key is compared

simultaneously with all stored. words; those which match the key emit a

match signal which enters a select circuit. The select circuit enables

the data field of the selected word to be accessed. If several entries

have the same key, then the select circuit determines which data field is

to be accessed. Since all words in the memory are required to compare

their keys with the input key simultaneously, each must have its own

match circuit. The match and select circuits make CAM chips much more

complex and expensive than RAM chips.

The logic circuit for a 1-bit CAM cell (bit j of-word i) is shown in

figure 1.4.5. It comprises a flip-flop, a match circuit for comparing

the flip-flop contents to an external data bit, and circuits for reading

from and writing into the cell. To write Information into this cell, the

write enable signal (WE) is set to 1, Si (select) is set to 1 for word

J 21

Input

IiA buf ferj

mask

sto rage match.. select
cell

array StLect Circuit

Output

Figure 1.4.4 Functional blocks of CAM. chips.4

22

S.

WEWwrtEeal

DiE daabt nu

Ej2data bit j output

M..:= match for bit j of word i

Figure 1.4.5 A 1-bit CAM cell.

II

23

(i) into which writing is desired, E is set equal to 1 for all J, and

D is set to the value of the data to be written. Reading is

accomplished by setting WE=O and Sj-I for the desired word to be read.

The word location contents will then appear on the output Qj. To search

for a match, Ej is set equal to 1 for those key positions which are to be

matched. Bit positions for which Ej20 will have match signals Mi=O. The

search key is entered into the D for the selected bits. Any cell for

which there is a mismatch between Dj and Qj will generate a 1 on MiJ if

Ej=1, otherwise a 0 is generated on Mij. Figure 1.4.6 shows a 4 x 4 CAM

memory array [25]. Note that the g lines of all cells in the same word

are connected by a wired-OR gate. Similarly, the output lines of bit j

in all words are connected by a wired-OR gate for each J. Since M is
is

the OR of Mij for all J, Mi will be 0 if and only if no Mij=1 for any j
Ijm

for which Ej=l. Thus Mi=0 if and only if a match is discovered in all

selected bit positions.

Foster (26) showed a ratio of 9:6 (or 7:5 if wired-OR is allowed)

between the number of gates required to make a bit of CAM and a bit of

RAM. Thus CAM's would cost between 1.4 and 1.5 times as much as RAM's if

semiconductor prices were purely based on the number of gates required.

However,this basis is not correct because, due to the economics of mass

production of integrated circuits, prices can depend more on volume of

production than on complexity of circuitry. Lamb [27] presents a price

comparison based on the available commerical prices in July 1978. He

showed that the price per bit of a 16-bit CAM chip (speed is 35 n3)

offered by Intel Corp. can be 287 times that of a 1 K static RAM (45

i M W

24

DE D E D E D E
WE 00 11 22 E3-3

D0 E0 D IEID E2D 3E3
MO0

DE

AM

A, df

.1'i I ,,

Fi ueA . ICM mmoy a ry

fil
.1

S0 0 0

Fiue1.. 4X4CA eor ra. -

25

ns) offered by the same company. The cost of CAM chips is so expensive

that a large lookup table implemented by CAM devices in a cache memory

design is usually prohibitive. However, cache memories with a reasonable

performance can be implemented by using RAM devices only. These

alternatives will be discussed and modeled in the following chapters.

In general, trc t wc for RAM chips. Since the read memory cycle,

trc , may not always equal the write memory cycle, two, an ALLIQxA

memory cycle g Q h which takes into consideration the

distribution of read and write memory accesses is introduced. Assume

that the fraction of read and write accesses of all memory requests are

fr and fw, respectively, such that fr fw=l. Then the effective memory

cycle of the RAM chip is tec = fr tro f w two For analytical purposes,

"memory cycle" will mean the effective memory cycle and is used as the

minimum time between two successive requests which can both be accepted

by a particular memory module. For CAM chips, the difference between

trc and two is insignificant and sometimes tr. = two, thus tec = tr=

two is assumed.

Therefore, a memory device is characterized by its cycle time,

to. This is referred to as the aslt memory cycle because the cycle,

t is expressed in seconds. However, the memory cycle can be quantized

as an integer number of STUs, namely c=ftc / T, where T is the segment

time unit in seconds. Hence the r memory cycle is c.

26

j.Objectives ot This Research

In general, a private-cache memory is attached to each processor in

a tightly-coupled multiprocessor computer system to improve the system

efficiency. The typical structure of these systems is illustrated in

figure 1.5.1. However, such a system will have the multicopy of data

problem as mentioned in section 1.1. Note that reentrant (or pure) code

avoids the multicopy of code problem because no modification of code is

allowed. This coherence problem usually exists in the following three

distinct forms:

(1) Multiple copies of shared data may exist in several

private-cache memories. Modification of any shared data by a

particular processor in its own cache memory will result in an

obsolete value of this shared data in every other cache memory.

(2) Multiple copies of data may exist in several distinct memory

levels. Modification of this data by a particular processor in

its own cache memory will result in an obsolete value of this

data in main memory. This difficulty may occur even in a

uniprocessor with an independent I/O channel because I/O

channels are normally connected to the main memory instead of to

the cache memory. In this case, the most recently updated

version of the data may be either in main memory or cache

memory.

(3) In a multiprogramming system, a processor usually switches to

27

Processors

p Private
Caches

p x M rossba

M
Ma in

0 0 Modules

Figure 1.5.1 Multiprocessor system with
private-cache memories.

28

other jobs at the time of arrival of external interrupt signals

or input/output operations. After a job has been switched, the

most recently updated data of this job might still be in the

original processor's cache memory. Hence a job running on a new

processor could use stale data in main memory. The new

processor cannot recognize the data as stale, and thus would not

be working with the job's proper context. Such operation is

incorrect and can result in subtle errors that are difficult to

trace down.

In addition to the problem of possible incorrect operation due to

the multicopy of data, another problem is important in terms of

availability. It may be the case that a processor has modified data in

its cache for several different jobs before the main memory is updated.

If the processor suffers a failure before the main memory is updated for

those modified data, then other processors cannot select any of these

jobs since their most recently updated data, stored in the cache

associated with the original processor, cannot be directly accessed.

Therefore, these jobs are effectively lost. The jobs must be manually

restarted from the begining or from the last checkpoint. It is clear

that coherence problems may occur even if no data is shared between jobs.

Also this difficulty exists even in uniprocessor systems with an

independent I/O channel.

In this research, a shared-cache memory structure is proposed to

eliminate the multicopy of data problem for multiprocessor systems. This

29

solution can resolve all three difficulties mentioned above without any

overhead penalty and hardware cost. However, with shared-cache memory

there potentially are cache access conflict problems. Hence the purpose

of this research is:

(1) To investigate the design methodology for shared-cache

multiple-stream systems.

(2) To find proper cache management strategies for shared-cache

memories.

(3) To study the effect of program characteristics on dynamic

space-sharing.

(4) To evaluate the effect of cache memory interference on system

performance for a variety of shared-cache memory configurations.

(5) To evaluate some design tradeoffs for obtaining cost effective

shared-cache memory and memory hierarchy configurations.

JA§ Rea lated W

Although multiprogramming and time-sharing systems have been with us

for a long time, very little work has been done on the effect of the

interactions of various program characteristics on dynamic space-sharing.

The working set model of program behavior has been extensively used to

study these systems. Yet little attention has been given to dynamic

30

multiprogram interaction; only average or stationary characteristics have

been investigated. Belady and Kuehner [28] studied an empirical model of

the lifetime function, i.e. an average interval of program execution,

for multiprogramming systems. Their conclusion showed that an increase

of space does not significantly improve the processing potential when the

space allocated to a task is small. For a large space allocation, the

processing increment induced by additional space improves rapidly.

Finally, when the task acquires a sufficiency of space, the processing

improvement by adding more space is approximately zero. Note that the

lifetime function is a stationary measurement. If the program's behavior

during a subinterval can differ significantly from the average,

conclusions based on the lifetime function may be inaccurate.

Coffman and Ryan (29) modeled the working-set size as a normal

stochastic process and obtained more insightful results on the

characteristics of dynamic space-sharing. Their general conclusion was

that dynamic storage partitioning is superior when the variation in

working-set sizes is relatively large. One common conclusion obtained by

the above authors is that dynamic storage partitioning would not give

worse performance than that of fixed storage partitioning. Dynamic

storage partitioning performs better than fixed storage partitioning

because space-sharing is superior if some processes have large

working-set sizes while other processes have small working-set sizes.

However, program working-set size is a function of time. Even with a

large variation in working-set sizes, dynamic storage partitioning may

not perform better than fixed storage partitioning if large working-set

.

rU

I
31

sizes for some streams do not mostly match small working-set sizes for

other streams in time.

Rodriguez-Rosell [30] observed the oscillatory pattern in

working-set size behavior when the working set window is small.

Vantilborgh [31] explained this dynamic behavior of the working set size

by using a mathematical model. Unfortunately, they did not investigate

the effect of interactions of the dynamic behavior of several streams on

system performance.

Cache memory is usually so small that it cannot contain the entire

working set of a single program. Hence, space contention in a shared

cache memory is much more severe than that in a shared main memory. The

dynamic interaction between several programs thus has a significant

effect on the performance of shared cache systems. In this research, the

phenomena of space-sharing under dynamically interacting programs of

various kinds are investigated.

One important application of multiprocessor systems is the parallel

multiprocessing environment, such as image processing and matrix

computation. In such applications, many synchronization and

communication operations between processes are needed and they are

usually implemented with the aid of critical sections and semaphores. In

addition to the possible computational data shared among processes,

critical sections and semaphores also involve a form of sharing.

Therefore, it is desirable to handle the coherence problem efficiently

" for a high performance system under a large shared data workload.

i

32

The difficulties caused by the multicopy of data problem in

private-cache multiprocessor systems have been introduced in section 1.5.

Some systems, like C.mmp [2), try to avoid this coherence problem by

allowing only information from "read-only" pages (especially

instructions) to appear in the cache. In other words, the "store

algorithm" used in this system is the "store only in main memory"

algorithm. However, the mean write rate for most processor architectures

is between 10 to 30 percent of all accesses. For some instructions, the

peak rate is much higher: 50 percent for a long move and 100 percent for

a move immediate (17]. A commonly high write rate will greatly degrade

the performance of a read-only cache system. In another solution, called

the classical solution (17], addresses of modified blocks are broadcast

throughout the cache memories for invalidation. To insure coherence,

every cache is connected to a communication path over which the addresses

of blocks to be modified are sent. Each cache constantly monitors this

path and executes the proper operations for invalidation. Censier and

Feautrier (17) point out that the drawbacks of this solution are: high

invalidation traffic, low cache efficiency and the need for buffers to

accommodate the peak invalidation traffic.

Recently, Tang[16J proposed an algorithm which includes a

centralized "store controller" and a "central directory" to keep track of

every block in each cache memory. Also, he assumed that the "store only

in cache" algorithm is used. Each block is identified as shared or

private. A shared block can have more than one copy existing in

different caches, but allows read access only. A private block can have

1

33

only one copy in the caches at any time, but allows write access. In his

solution, overhead is due not only to the extensive search operations

executed in the store controller but also due to the checking of every

desired block status in order to initiate a cache memory operation. As

the shared data between tasks becomes large, normal cache operation may

be interferred with by commands from the store controller to change

shared block status. This interference and overhead may be severe for

some kinds of shared blocks, such as those which contain critical

sections or semaphores, for which the status may have to be changed back

and forth many times during execution. Furthermore, the access conflict

problem may occcur at the store controller because it is centralized and

shared by all caches and channels. Censier and Feautrier (17] proposed a

solution very similar to Tang's algorithm. In addition to the drawbacks

of their solutions mentioned above, none of these solutions can

efficiently resolve the coherence problem for multiprocessor systems in a

multiprogramming environment. That is, when a processor wants to switch

the job, the processor must sweep its cache to validate main memory

before another processor can run the same job.

In this research, the coherence problem is resolved by the

architectural approach of sharing caches. The potential performance

degradation of this proposed structure is simply cache memory access

interference. However, this cache memory access conflict problem can

easily be overcome by using a sufficiently large number of cache modules

and can theoretically be alleviated to any desired degree.

Various analytic and simulation models have been developed to study

34

memory access conflicts. Several models (32-35] seem to assume a single

processor with instruction look-ahead capabilities. Here, we will only

present the analytic models of interleaved memory in multiprocessors.

The discrete Markov chain model proposed by Skinner and Asher (36) is

limited to a small number of processors (t 2) because of the complexity

involved for large systems. Strecker [19] investigated the conflict

problem in a multiprocessor system with P processors and N memory

modules. By approximate analysis, a closed form representation of the

memory bandwidth was obtained as N[1-(1-1/N)P]. Ravi[37] studied a

similar model and derived a complicated solution for expected memory

bandwidth. It is interesting to note that Strecker's formula is a closed

form representation of Ravi's formula. Bhandarkar (38] expanded on

Strecker's results. Sastry and Kain (39) had similar models but also

investigated performance using distinct storage for instructions and data

with interleaving only in the instruction space. Baskett and Smith [40)

have also investigated the memory conflict problem in multiprocessor

systems. They derived several approximate solutions and compared their

predictions with simulation results. Briggs and Davidson [41,42] studied

a more general multiprocessor model in which the system consists of a

wide variety of parallel-pipelined processors of order (s,p) with two

dimensional interleaved memory configurations. The other models cited

involve special cases of their multiprocessor system models. In this

thesis, an adaptation of Briggs and Davidson's memory organization will

be used as our shared-cache memory organization. A more detailed review

of their memory model is presented in chapter 2.

I
35

1.70erview 2f the Dissertation

Background material and motivation of the research have been

presented in this chapter. In chapter 2, the shared-cache memory

organization is discussed. A study of cache management strategies for

the shared-cache memory is given. Total system configurations are also

outlined. In chapter 3, the performance of the shared-cache memory

system is analyzed for two distinct cache models. A discrete Markov

approach and a probabilistic approach are developed for both models. A

probabilistic model for private-cache systems is also evaluated. Bounds

on performance are obtained for one of the shared-cache models. In

chapter 4, the accuracy of these models is evaluated by simulation. Some

effects of program behavior on dynamic space-sharing are discussed. The

effects of the various parameters on performance are investigated. In

addition, some design tradeoffs are studied. The performance of

shared-cache systems are compared with that of private-cache systems.

Chapter 5 presents overall conclusions and prospects for further

research.

7

36

CHAPTER 2

SHARED CACHE MEMORY ORGANIZATION

2.1 Introduction

As mentioned in the previous chapter, the use of cache memory

provides an effective memory access time at the system level near that of

the fast smaller cache memory with the apparent memory capacity near that

of the large and slower main memory. Thus, the processor ideally tends

to operate with a memory of cache speed but with main memory

cost-per-bit. This performance goal is similar to that of other systems

using memory hierarchies, such as paging or virtual memory systems.

However, there are some important differences between the cache-main

memory hierarchy and the main-secondary memory hierarchy. In contrast

with main-secondary memory hierarchy, a cache is managed by hardware

rather than software, deals with smaller blocks of data, uses a smaller

ratio of memory access times, accesses second level memorN directly, and

holds the processor idle rather than switching to another task while

blocks of information are being transferred from main memory to cache.

These important differences significantly affect the choice of design

parameters for these distinct memory hierarchy systems. For example, in

a multiprogramming paging system, the processor switches to another task

when a page fault occurs. Task switching makes the page transfer time

I
137

less critical to the system throughput. Task switching is necessary

since the ratio of memory access times can be as high as 1000:1 and the

task switching overhead is far lower than the page miss wait time. Page

hit ratio and task switching time rather than page transfer time are

considered as important parameters in such a main-secondary memory

design. However, in a cache system, the processor is forced to wait when

a cache iss occurs. Thus the throughput of this system critically

depends on not only the cache hit ratio but also the block transfer time.

Before any performance analysis for a cache system can be done,

certain cache design parameters have to be determined in advance. In

general, these parameters can be classified as functional

(organizational) parameters and component parameters. Functional

parameters determine the hardware functions and system organization in a

cache system, such as address mapping mechanism, replacement algorithms,

main memory updating schemes, and so on. Component parameters determine

the physical sizes of various components in a cache system, such as total

cache size, block size, cache memory cycle time, block transfer time, and

so on. Although these two kinds of cache parameters are not independent

of each other, from a system design point of view, functional parameters

should be determined prior to component parameters. In this chapter,

only the functional parameters of a shared cache memory design are

discussed and determined. A range of component parameters is examined

and their effects compared in chapter 4.

Cache memories have been with us for more than twenty years (43].

Today, cache memories are used by many of the prevalent machines (such as

L -_

38

IBM 360/85, 360/195, 370/158, 370/168, Amdahl 470V/6, DEC PDP 10/L, PDP

11/70, etc.). The performance of cache memory for uniprocessor computer

systems is well-known (44,45,46-51] and satisfactory. But the design of

a shared cache memory for multiple-stream computer systems is quite

different from the design of a cache memory for conventional uniprocessor

computer systems. Furtor considerations apply to shared-cache

multiple-stream computer system design. Section 2.2 reviews various

cache memory mapping mechanisms and discusses their feasible application

to shared-cache memory design. In section 2.3, replacement algorithms

and main memory updating schemes for shared-cache memory is discussed.

Section 2.4 presents the L-M shared-cache memory organizations. Section

2.5 illustrates various memory interleaving implementations and their

corresponding addressing formats. Section 2.6 explains request

scheduling in a shared-cache memory system. The last section gives

overall system configurations and considerations about realistic

implementations of some hardware functions.

2.2 Cache Memory Mapping Mechanisms

The addresses assigned to a cache are maintained in a

hardware-implemented memory map. Usually, this hardware memory map is

implemented based on an associative memory. Associative memories are

very expensive, so that a number of more economical memory mapping

mechanisms have been proposed [52]. Besides the consideration of cost,

several undesirable features may occur when some of these proposed

I
39

mechanisms are applied directly to a shared-cache memory design for

multiple-stream computer systems. In order to explain these undesirable

features and to determine a proper mechanism to be used in the future

discussion, the previously proposed mapping mechanisms are examined below

in detail.

2.2.1 Fully Associative Mapping

The conceptually simplest memory mapping scheme is called fully

associative. Cache memory and main memory are logically divided into

equal size blocks. In this case, any block from main memory may be

mapped into any block in the cache as shown in figure 2.2.1(a). This

requires that for each block stored in the cache, a corresponding block

address must also be stored in the associative lookup table, and at the

time of each processor request, a complete lookup table search must be

made for the referenced address. A fully associative lookup in a cache

tends to be extremely expensive and/or slow, because of the large search

required. However from the space contention point of view the fully

associative scheme is the theoretically optimum mechanism for

uniprocessor systems. Unfortunately, this parallel lookup search becomes

the most unacceptable drawback to using the fully associative map in a

multiple-stream computer system. Recall that a parallel-pipelined

processor of order (s,p) can issue p simultaneous cache memory requests

each STU. Then p-1 requests out of those p requests will be rejected due

to the conflict of parallel lookup search if one single-ported fully

Ii
..-

46

40

M i Me i 1

Set 06

- 4P

S e c t o r 1 ' ' " • . . S e t I " "

Cache Cache %

Main Ma in

S(a) (b)

m m

Figur he memory mapping mechanism:

(a)fully associative mapping, (b) direct mapping,
(c sector mapping, and d set associative
maipMpingi

(c d

Fiur .21Cahemmoymapigmehnim

41

associative map is used. Obviously, this fully associative lookup is an

intolerable bottleneck in the system. A more detailed analysis below

shows that a severe bottleneck problem is inevitable if the fully

associative scheme is used in a multiple-stream computer system with

shared cache memory.

Generally speaking, an associative lookup table (or cache directory)

can be implemented explicitly or implicitly. Here an explicit lookup

table allows the referenced data to be accessed only if the corresponding

tag has already been checked; an implicit lookup table allows the tags

and the corresponding data to be accessed simultaneously. For an

explicit lookup table, the lookup table is usually physically separated

from the cache memory module. However, for an implicit lookup table,

block addresses and data are usually stored together in the same cache

module. An explicit lookup table is usually built inside the processor

and is used when a procesor needs fast interrogation service. An

implicit lookup table provides the ability for readout and interrogation

to be achieved almost simultaneously. Implicit table implementation in a

shared fully associative cache can accept only one request at any time

because parallel (or associative) searching through the whole cache

memory is required. Therefore, a bottleneck occurs at the shared cache

memory in the implicit lookup case. In the explicit lookup case, if each

processor is allowed to have its own local lookup table, which contains

the information about its own cache usage, then the multicopy problem

occurs in the local lookup tables because the cache is shared among all

processors; if each local lookup table contains the information about

42

overall cache usage, then maintaining all local lookup tables is

practically infeasible with present technology. As an illustration,

consider a parallel-pipelined processor of order (s,p): there are p

simultaneous requests issued every STU. At any time, if all p requests

result in cache misses, then there may be sufficient time to update p

entries in each lookup table because the block transfer time is usually

much longer than the lookup table cycle. However, in the case of p-1

simultaneous misses, the lookup table has to be so fast that it can

update p-1 entries, i.e. p-1 write cycles for single-ported lookup

table, within one STU in order to accept the next request made by the

only currently hit process. When the number of processors, p, is large

or the segment time unit, T, is small, to meet this speed requirement for

the lookup table is not trivial. If these lookup tables are also used by

the replacement algorithm, then the situation becomes even worse since

the new state of each local lookup table critically depends on the

results of all p simultaneous requests. In order to avoid the multicopy

problem in the local lookup tables, the explicit lookup table has to be

centralized and shared. However, the lookup table maintenance problem

still exists and access conflict may occur at this centralized lookup

table. For these reasons we exclude the fully associative cache from

further consideration in the case of shared cache memory design.

2.2.2 Direct Mapping

At the other extreme is direct mapping. Cache memory and main memoey

43

are logically divided into equal size blocks. Each block has associated

with it its own specific tag. In this scheme, if there are N blocks in

cache memory, then every Nth block from main memory may be mapped into

one specific block of cache memory as shown in figure 2.2.1(b). The tag

associated with each block is actually the high order bits of

CPU-generated address. At the time of each processor request, the high

order bits of the CPU-generated address are compared to the tag of the

cache block to determine whether the requested data is stored in the

addressed cache block. Because of the direct mapping aspect, there is

one, and only one, block of cache memory which can store a specific block

of main memory. Therefore, no associative lookup search is needed. The

tag comparison is achieved by using implicit lookup. Not only is the

hardware needed to provide direct mapping very simple, but also the cache

access time is small because the desired data and the desired tag can be

accessed simultaneously. A disadvantage of direct mapping in a I
uniprocessor environment is that the cache hit ratio drops sharply if two

or more blocks, used alternately, happen to map onto the same block in

the cache. The possibility of this contention may be small in a

uniprocessor system if such blocks are relatively far apart in the

CPU-generated address space. The possibility of this contention in a

multiple-stream shared-cache system may be much higher than that in a

uniprocessor system because many concurrently active streams are sharing

the cache. As can be expected, the more streams in a shared cache *

system, the higher the probability of contention. Thrashing may occur

while many streams are contending for a single block in the cache. Here

thrashing means that a just-replaced block is needed again immediately

i. I

44

due to a cache miss. This phenomenon of excessively moving blocks back

and forth between cache memory and main memory can keep the cache busy

and the processors idle most of the time. Deadlock may also happen if

the processors are not allowed to access main memory directly and the

shared cache does not have the ability of load through [52). Two

processes are deadlocked if neither can continue until the other

continues. Load through is simply thi ability to by-pass the cache for

the specific data referenced when data is not found in the cache. Thus,

the data arrives at the CPU as fast as it could from a main memory in a

noncache organization. Without load through, a Just-brought-in block

required by a specific processor may be replaced due to a cache miss by

any other processor before the request of this specific processor is

satisfied. Due to the high possibility of cache block contention and

performance collapse, direct mapping should also be ruled out for a

shared cache memory design.

2.2.3 Sector Happing

In sector mapping, cache memory and main memory are logically

divided into sectors each composed of a number of blocks. A sector from

main memory can map into any sector in the cache. The requests to main

memory, however, are for blocks and if a request is made for a block not

in the cache, the sector to which this block belongs is assigned space in

the cache but only the block that caused the Miss is brought into the

cache and the remaining blocks of this sector are marked invalid. Figure

45

2.2.1(c) illustrates the sector mapping with a two block sector.

Although sector mapping needs relatively few tags (one tag per sector in

the cache plus invalid bits), the performance of this mechanism is now

known to be unsatisfactory since sectors in cache may not have high space

utilization. In a shared cache system using sector mapping, the same

bottleneck problem as that mentioned in fully associative mapping will

result due to the fact that sectors are randomly mapped. It follows that

sector mapping is not an acceptable candidate for shared cache memory

design.

2.2.4 Set Associative Mapping

In the set associative mapping mechanism, again, cache memory and

main memory are divided into blocks, with each block of cache memory

having a tag associated with it. The blocks in cache memory are then

grouped into sets. The set size is the number of cache blocks contained

in each set. If the cache is divided into N sets, then a block i in the

main memory is mapped into the set j in the cache satisfying i=j(modulo

N). Each set is conceptually controlled by a small associative memory,

so that mapping within each set is fully associative. In figure

2.2.1(d), a set associative mapping with a set size of two is shown. Set

associative mapping reduces to direct mapping when the set size equals

one; it reduces to fully associative when the total number of sets in the

cache equals one. Intermediate set sizes lead to mapping methods

requiring an intermediate amount of associative hardware. For each set

46

of size a the associative mapping within the set permits any s blocks,

selected from those which belong to this set, to be stored in the cache

simultaneously.

It has been shown for uniprocessors that set sizes of 2 or 4 under

set associative mapping perform almost as well as fully associative

mapping at little cost increase over direct mapping [46]. The set

associative mapping mechanism has become widespread for the operation of

cache memories for reasons of cost and efficiency. In a multiple-stream

shared-cache system using set associative mapping,there exists no

parallel lookup bottleneck problem such as that in the fully associative

and sector mapping schemes since each set in the shared cache is uniquely

addressable by all the processors. Block access contention may still

occur within each set in a shared cache memory system. This contention

can be reduced to very low levels by choosing a reasonably large set

size. The appropriate set sizes for multiprocessors with shared cache

will be evaluated later. Each set in the shared cache system can only

accept one request per STU for single-ported lookup tables because an

associative search is needed for blocks within each set. This conflict

problem can also be reduced to very low levels by using an appropriately

large number of cache memory modules each of which contains few sets or

only one set. Then this conflict problem is essentially the same as the

memory conflict problem in multiprocessor systems with shared main

memory. Since associative mapping is used only for blocks within each

set, each associative lookup table is updated if and only if a request

has been made to and accepted by the associated set. Note that there is

I
47

at most one such request per STU for each set. Only the results of this

request can make the referenced associative lookup table change to a new

state. The time needed to update the associative lookup table is

transparent. As shall be seen, the set associative mapping mechanism is

the most suitable and promissing candidate for shared-cache memory system

design if a set of proper component parameters is chosen. The rest of

this thesis is based on the set associative mapping mechanism, except

where mentioned.

2.3 Management of Cache-Miss

Another important cache memory management decision is the choice of

replacement algorith, which determines which block or blocks will be

removed from cache memory in order to make space available for new

blocks. This choice is constrained by the selected mapping mechanism.

For set associative mapping, a cache miss when referencing a particular

set causes some block in that set to be replaced. Various page

replacement algorithms have been proposed [23,53). Since it is generally

impossible for the cache to keep the working set [21 of even one program

in the cache at any time, and also because of the high speed requirement

of the cache controller, only simple and fixed space replacement

algorithms such as LRU, FIFO, and RAND are generally considered. The LRU

(Least Recently Used) replacement algorithm replaces that block in a set

which has not been referenced for the longest period of time; the FIFO

(1irst In First Out) replacement algorithm replaces that block in a set

48

which has been in the cache memory for the longest period of time and the

RAND (RANDom) replacement algorithm selects from the set a block to be

replaced at random.

2.3.1 Replacement Strategies

FIFO has the advantage that it is easily implemented.

Unfortunately, this method has the defect that some frequently used

block, e.g. one contained in a program loop, may be replaced because it

is the oldest block, yet it may be the block referenced next. FIFO has

been shown to exhibit other anomalous behavior for certain reference

strings [54]. This aege fault anomaly is the phenomenon that increases

in memory size can also increase the number of page faults, i.e. FIFO is

not a stack algorithm in the sense of [23).

RAND is a very simple and naive procedure. RAND, like FIFO, may

also replace a frequently used block because the replaced block is

randomly selected. Although RAND yields acceptable performance when set

size is large enough, the cache tends to be expensive and/or slow for

large set sizes.

The LRU replacement algorithm is based upon the very reasonable and

empirically justified assumption that the least recently used block is

the one least likely to be referenced in the near future. Thus the LRU

algorithm tends to avoid the replacement of frequently used blocks, in

contrast to FIFO and RAND. The LRU replacement algorithm has a

I7
49

characteristic very similar to that of working set replacement policy.

Both these algorithms are adapted well to program behavior and based on

the principle of locality of reference. The LRU algorithm is a stack

algorithm and therefore the hit ratio increases monotonically with the

memory size (23). This characteristic guarantees that the page fault

anomaly mentioned above will not occur with LRU.

Comparisons between RAND, FIFO and LRU were made by Belady (53], and

it was observed that RAND and FIFO gave similar performance results. LRU

gave improved results. Hence only the LRU replacement algorithm will be

considered further in this thesis. In the multiple-stream processor

system with set-assoCiative shared-cache using LRU, each set has its own

hardware-implemented LRU replacement algorithm. All the streams in the

system thus compete for cache space by competing for their share of the

blocks within each set.

A very important criterion for the LRU replacement hardware design

is speed. The set size chosen should represent a compromise between

minimizing the miss ratio and minimizing the speed and cost. Small set

sizes result in competition among simultaneously active blocks for the

small number of spaces in a set; large set sizes require more hardware

for search and replacement and/or operate more slowly. The choice of set

sizes and other component parameters will be discussed when the

U simulation results are analyzed in chapter 4.

i

50

2.3.2 Cache Block Fetch and Handling of Write-Miss

So far the fetch strategy, i.e. demand or prefetch, has not been

resolved. The fetch strategy defines the policy of when to load blocks

and how many blocks to load at a time. Since cache size is much smaller

than main memory size, the space contention in a cache is more severe

than that in the main memory of a paging system. Block prefetch is

normally not used at the cache level. Usually the cache is so small that

it cannot hold the entire working set of a program. Thus, it is very

possible that some frequently used blocks would be expelled in order to

allocate prefetched blocks. The prefetched blocks may not be referenced

in the near future or may not be referenced at all due to changes of

program locality. All the previous studies, i.e. [45,46-48,51], of

cache design show that the hit ratio drops if the block size exceeds

certain minimal values. This well-known result illustrates that

sequential block prefetch may not be suitable for cache design. In this

thesis, only demand fetching, i.e. fetch one block on miss only, is

considered.

There are two possible variations of demand fetching, that is, write

allocation and no-write allocation [45,46). No-write allocation brings a

block into cache only on a read miss; write allocation brings a block

into cache on read as well as write miss. Since these two fetching

strategies are tightly related to the manner in which processor writes to

memories are handled, the determination of fetching strategy will be

deferred until the main memory updating scheme is chosen.

51

Basically, there are two kinds of main memory updating schemes. In

the simplest approach, known as write through [45,55,56], all writes are

sent to main memory, the block is also updated in cache if it is there.

In this case, it is implied that the processor has the ability to

directly access the main memory and the blocks are brought into cache

only on misses for processor read-memory requests. Hence write through

is usually used with no-write allocation. Write through is also called

store through by some authors 117,52]. An alternative approach, known as

swapping (52], is to write the word in the cache and then always write

the word in main memory when the block in cache must be replaced. Since

direct modifications of data always happen in the cache, this approach is

usually used with write allocation. Swapping is also termed write back

(45], block swapping [46], conflict-use-writeback [55], or

nonstore-through (17].

The effectiveness of write through is known to be less than that of

swapping in a uniprocessor system [52,46,55). A lot of unnecessary

writes may occur with the write through strategy because a word may be

updated several times during the time it resides in the cache. The

statistics of instruction mixes show that, depending on the processor

architecture, from one tenth to one third of all accesses are write

accesses [17,55]. The access rate to main memory cannot be less than the

write access rate of the processor if a write through updating strategy

* is used. Recall that in order to gain maximum advantage from the cache,

the fraction of references to main memory must be minimized. This points

out that pure write through is not suited to high performance systems.

i

52

Although write through can be overlapped with cache cycles because the

write operation has no deadline, the processor will be forced to wait on

the successful completion of writes to main memory if there is no buffer

used for writing the main memory. Recently, Smith (56] reported that a

sufficiently large buffer for write-through can greatly reduce the

performance difference between write-through without buffering and

swapping.

On the other hand, in addition to conceptual simplicity and ease of

implementation, write-through has the advantage that obsolete information

is never present in main memory. This can be particularly valuable in

systems with independent input/ou.put paths. Note that the input/output

chanels have data rates substantially lower than instruction processors

and therefore there is no performance advantage in connecting them to A

high speed cache.

The advantage of the swapping schemes is that, at least in theory,

the access rate to the main memory is the miss rate and may be reduced to

any desired value by a sufficient increase of the cache size. However,

the swapping schemes have the disadvantage of invalid multiple,

nonidentical copies of the same data existing in several memories. Pohm

(57] identifies three swap algorithms: simple swap, where information is

always written back when it is removed from the cache; flaged swap, by

which only information that has been changed is written back to main

memory; and flagged register swap, by which a block of information in the

cache that has been changed and is to be written back is swapped into a

register buffer and then written to the main memory after the fetch has

reAIXter

53

been completed. It is shown (57] that a flagged register swap algorithm

yields the best performance among all the above three schemes and the

write-through scheme without buffering.

Up to now, discussion about main memory updating schemes has been

based on a uniprocesor system or a system with a single CPU and several

asynchronous input/output channels. Unfortunately, the above results and

conclusions cannot be directly applied to multiprocessor systems. The

reasons are explained below.

As shown in figure 1.5.1, there exists an interconnection network

between the caches and the main memory modules in a private-cache

multiprocessor system. If a write through scheme is used in such a

system, the high write access rate to the main memory will increase the

main memory conflict. Note that in a multiprocessor system with p

streams and p private cache memories, the write access rate to the main

memory is p times higher than that for a uniprocessor system if both

systems use write through. In addition to the access conflicts between

the block transfer operations, access conflicts between write accesses

will take place as well as interference between block transfer operations

and write accesses. Furthermore, the inuerconnection network is switched

very often due to the high write access rate. This will cause setup time

overhead if a slow switching network is used. The main difficulty is

that write through will cause the multicopy of shared data among private

cache modules. In section 1.6, two previously proposed solutions (16,17]

of the multicopy of shared data problem have been discussed. In these

two algorithms, swapping is implied because both algorithms treat a block

54

as a critical section when this block is being modified. All the

modifications of data have to be done in all the relevant caches and then

the blocks are copied back to the main memory when replaced. The

swapping scheme with write allocation is the primary requirement for

these algorithms. Consider that if write through is used, then every

single word write access becomes a critical section in order to solve the

multicopy of shared data problem. Clearly, this is an intolerable design

and swapping with write allocation is preferred in a private-cache

multiprocessor computer system.

Due to the fact that there is no switching network needed between

the cache and the main memory in a shared-cache multiple-stream system

(see section 2.7 for explanation), write through in such a system will

not cause severe main memory access conflict. Updating the main memory

can be overlapped with the processor cycle if sufficiently large

buffering for write through is provided. In this case, the interference

between write accesses and block transfer operations on the same bus line

can be supressed if a higher priority among main memory accecaes is

granted for block fetches and lower priority for queued write accesses to

the main memory. It might happen that a read access to a block in the

main memory occurs due to cache miss before this block is updated to

reflect pending writes. This situation can easily be handled by adding

some hardware control in the main memory. Every block read access to the

main memory then searches the corresponding buffer to determine whether

the referenced block needs to be updated. This buffer search time can be

expected to be small compared to the total block transfer time and can be

55

included in the block transfer time, T, for analytical purposes. The

write-through with buffering scheme discussed above preserves the

advantages and eliminates the disadvantages of a simple write-through

scheme. It may also enhance the hit ratio since all the write accesses

are considered as hit requests. Therefore, the write-through with

buffering updating scheme and the no-write allocation strategy are

desirable in a shared-cache multiple-stream computer system.

To be able to make a fair comparison between private-cache and

shared-cache organizations, a flagged register swap algorithm is

considered in the private-cache multiprocessor systems. Then, updating

the main memory is overlapped with processor cycles in both systems.

Similarly, for private-cache systems, the register search time can be

considered as part of the total block transfer 'time. Note that the major

interest in this thesis is the performance variation due to the memory

conflict problem and the hit ratio behavior for a range of cache

organizations. The effectiveness of particular buffer sizes for various

main memory updating schemes is not investigated. In the rest of this

thesis, it is assumed that a sufficiently large buffer size is used in

all models such that the processors will never be blocked due to the main

memory updating operations caused by either the write through or swapping

policy.

The cache management options presented so far, such as mapping

mechanisms, replacement algorithms, and write policies (write through and

write back) do not affect the analysis presented in chapter 3.

11

56

2.4 L-M Cache Configuration

In the previous sections, several functional parameters of cache

memory design have been discussed. Before any analytic model can be

developed for shared-cache memories, a shared-cache memory organization

has to be chosen in order to determine cache memory request scheduling.

One memory organization which is suitable for multiple-stream processor

architecture is reviewed in this section.

The memory organizations for multiprocessor systems discussed by

most authors use N address busses for N independent memory modules.

Although the performance of such a memory organization is good, the bus

cost and the interconnection network cost are usually high. Recently, a

two-dimensional memory organization which intends to increase the bus

utilization and reduce the cost of both the interconnection network and

bussing is investigated by Briggs and Davidson [41]. This organization,

referred to as the L-M memory organization, can achieve high performance

without sacrificing cost-effectiveness and is used as the shared cache

memory organization in this thesis. The rest of this section reviews the

L-M memory organization and explains the way that this organization is

adapted for shared cache memory applications.

Many large scale integrated RAM chips have their address cycle

significantly smaller than the memory cycle. Therefore, more than one

module can share one address bus thereby increasing the bus utilization

and reducing the bus cost. To allow maximum address bus sharing, the

address hold time, a, on the address bus should be designed as short as

3

57

possible. This may be achieved by incorporating an address latch within

each memory module. Then, the address hold time on the bus for each

memory request is the address bus cycle time which is only a small

fraction of the memory cycle time. Whenever a memory module is active

for a memory cycle, its associated address bus is active for only this

small fraction of the memory cycle. By multiplexing a group of memory

modules on an address bus, the period for which the bus is inactive may

be used to broadcast the addresses of new memory requests. Although the

performance is degraded as a consequence of bus-sharing, some address

busses can be eliminated and the size of the processor-memory

interconnection network can also be reduced. This tradeoff between

bus-sharing and performance will be studied in later chapters.

Similarly, data busses cn also be time-multiplexed if latches are

provided within each memory module to gate-in write data and drivers can

be enabled to drive out read data. For simplicity, it is assumed that

the address bus is busy as long as there is some cache module on that bus

which is involved in a block transfer operation. Hence the data busses

do not pose a limiting constraint and are not explicitly considered from

now on.

In the following discussion, a line is used to denote an address bus

within the memory. Hence, assuming that there are N identical memory

modules in the shared cache memory, there can be up to N independent

lines in the memory. The L-M memory organization, shown in figure 2.4.1,

consists of 4 (=2k) lines and m (z2 n
'k) memory modules per line, such

n
that a total of N s :2 z £m) identical memory modules are arranged in a

1"

58

M O MOi M -1

SM ,0 .-,1 M -1

Lj[- MI-1 0 Mtimi1

Figure 2.4.1 L-M memory organization.

I
59

two-dimensional matrix form, where both k and n are integers and 0 k

n. Therefore, a particular configuration of the L-M memory organization

can be characterized by the corresponding memory cofigur o, (1,m).

In figure 2.4.1, Li and Mi4j represent line i and module j on line i,

respectively. It is obvious that no line sharing is required if the

segment time is greater than or equal to the memory cycle time (ca1). In

this case, the performance is independent of the number of memory modules

per line. Figure 2.4.2 shows the bus structure of the L-M memory

organization. Each set of modules on a line in addition to sharing the

same address bus share the same data input and data output busses. That

is, there is one each of address, data input and data output busses for

the set of m cache memory modules on each line.

2.5 Address Interleaving

Memory interleaving is a common and inexpensive way to yield high

effective memory bandwidth. In a multimemory system with N memory

modules, if successive word addresses are assigned across the memory

modules, modulo N, the memory is interleaved ky low-order bits, or

interleaved by words. The low-order log N bits of each address indicate

the module number in this case. However, this low-order-bit interleaved

memory is not suitable for shared cache memory applications for the

following reasons :

(1) While executing the block transfer operation due to a cache miss,

.... ..

60

Data Input
Bus For Line 0

Data Output
Bus or Lie /0

Bus For Line 0

Data Input

Data Output
Bus For Line 1

Bus For Line~drs 1 - -

Data Input n
Bus For Line I-ILU

Data Output
// - JBus For Line 1-I

Address - -
Bus For Line I B s r ty g z

Figure 2.4.2 Bus structures of the L-M memory organization.

61

the whole cache system will be busy and all the processors will be

blocked for the block transfer period. One stream with poor cache

performance may then degrade the performance of all the other

streams in the system.

(2) For the set associative cache memory mapping mechanism, each block

of cache storage has an identifying tag associated with it. If

low-order-bit interleaving is used in the shared cache memory, then

the words in one block will be spread over several, or perhaps all,

cache memory modules. So, the number of tags required may be up to

N times the number of blocks contained in the cache memory if an

implicit lookup table is used. In this case, the cache memory cost

is high because many tags are needed. In the extreme, when the

block sizrs is smaller than the number of cache memory modules, then

each word in the cache memory needs its own associated tag.

Unfortunately, an explicit centralized lookup table cannot be used

because it would cause the same bottleneck problem as that discussed

in section 2.2 for the fully associative mapping mechanism.

Therefore, a costly cache memory is inevitable if the shared cache

memory is interleaved by words.

On the other hand an uninterleaved memory, in which the high order

log N bits of each address determine the memory module, cannot

effectively reduce memory access conflict in multiple-processor

environments.

I1 Z L. . . J . . I ' '

62

Therefore, in order to keep the number of tags equal to the number

of blocks in the cache memory and to try to enhance the effective cache

memory bandwidth at the same time, a compromise solution of address

interleaving is proposed here. A memory is called interleaved by sets if

the successive set numbers are assigned across the cache memory lines.

Figure 2.5.1 shows the address format for a set associative cache memory

organization, the least significant b bits of the address determine the

word address within a block, the next higher order d bits of the address

determine the set address in the cache, and the remaining (high order)

bits are used as the tag to identify the particular block within the set.

Integers b and d specify the block size (22 b words) and the total number

of sets (=2d sets) in the cache memory, respectively. The right-most b

bits of the address are then referred to as word bits; and the next d

bits of the address are called set bits. The shared cache memory can

easily be interleaved by sets by choosing either of the following two

possible implementations.

The address format for the first implementation is shown in figure

2.5.2(a). Assume that the total number of sets is greater than or equal

to the total number of cache modules. Given the memory address of a

word, the k least significant bits of the set bits address one of the

2 lines, Li, and the next higher order n-k bits address one of the

2Pk modules on line i, Mili Then the high order d-n bits of set bits

address one of the 2d-n sets in module Mli and the tag bits are used for

associative search. If the associative search results in a hit, then the

b block bits address one of the 2b words in the hit block; otherwise, a

63

STag d b

Block in Word in

Set Block

Figure 2.5.1 Address format for a set associative
cache memory organization.

- d -N

d-n n-k k bI I
J Set I Module I Word

Tag in I on Line in
I Module Line I BlockI I I

~d ---b ----

d-k k n-k
Set ' 'odl

I i ,

Tag in Line I on
Module IJ Line

I=q £ = 2 k
n-km= 2

Figure 2.5.2 Address formats for twoI. implementations of interleaving by sets.

[

[I I I II I| j j jj, . -;

64

miss occurs and a block transfer operation may be initiated according to

some fetch policy, discussed in chapter 3. Rence, the cache modules are

interleaved on the low order n bits of the set bits and the lines on the

low order k bits of the set bits. Note that the set size is not

explicitly indicated in the address format and is dependent on the block

size, the total number of sets and the total cache capacity. Although

this implementation requires no tag duplication because each set is

wholly contained in a particular cache module, potential serious

performance degradation may result from blocking due to the long block

transfer time required. This implementation requires new blocks to be

loaded into the cache one word per cache cycle during the block transfer

operation. Hence the block transfer time, T, is primarily dominated by

the cache cycle time, c, and the block size if high main memory bandwidth

is provided. As mentioned before, while a module is involved in a block

transfer operation, the associated line is busy until the block transfer

operation is completed. Therefore, for a slow cache or a large block,

the block transfer time is long and all the cache modules on a line being

used for block transfer will be blocked for a lone period.

Another implementation tries to improve the performance by reducing

the block transfer time without changing the system organization. Assume

that the block size is greater than or equal to the number of cache

modules per line and the number of sets is greater than or equal to the

number of lines. Figure 2.5.2(b) illustrates the address format for this

implementation. Given the address of a word, the k least significant

bits of the set bits address one of the 2 k lines, Li, the n-k least

65

significant bits of the word bits address one of the 2n
- k modules on line

i, Mi'j, and the high order d-k bits of the set bits address one of the

2 d
-k sets in module Mi j. Since the least significant n-k bits of the

address, the word bits, determine the module number on some line, the

successive words in a block are interleaved across the modules on the

same line. Hence the modules on one line can be considered as a memory

interleaved by words. During the block transfer operation, those modules

on the same line can not be cycled synchronously because the associated

line is time-multiplexed. However, they perform like phased memories (or

interlaced memories) in which each of the memory modules is cycled on a

different minor clock cycle. The minor clock cycle here is the signal

propagation time from main memory to cache memory, usually made equal to

the bus cycle time (1 STU) discussed above. Therefore, new blocks are

loaded into the cache one word per bus cycle, instead of one per cache

cycle, during the block transfer operation. By properly choosing the

number of modules per line, a phased memory system can have the same

bandwidth as that of a parallel accessible memory system with the same

cycle time and the same number of modules. Note that the L-M memory

organization is actually a parallel phased (or interlaced) memory

organization. Note that successive sets are assigned across modules on

distinct lines and successive words of a block are assigned across the

modules on the same line. Although this implementation could reduce the

block transfer time, more tags may be needed due to the fact that each

block is spread over m cache modules. For a cache with an implicit

lookup table, one tag is needed for each block within every cache module.

Therefore, over the entiLe cache each tag is replicated m times.K I

66

However,if an explicit lookup table is associated with each line (as

discussed in section 2.7), then no extra tags are required. Such an

explicit lookup table can be used without dograding performance if the

lookup table cycle time is less than or equal to one STU.

These two possible implementations become the same if m equals 1,

that is one module per line. The choice between the two implementations

involves the tradeoffs of performance and cost, i.e. block transfer time

and number of tags.

For brevity, a shared cache memory interleaved by sets with a memory

configuration characterized by (1,m), is a particular realization of the

L-M memory organization, where the number of lines, -2k, and the number

of modules per line, m:2n
-k . For example, if k=3, n=5, then 1:8 and m:4.

Hence we have a memory configuration of (L,m)=(8,4). The total number of

sets in the cache and the block size are determined by d and b,

respectively. For example, given a 4K cache memory with b=4 and d=5,

then block size is 16, number of sets is 32, number of blocks is 4096/16

= 256, and set size is 256/32 = 8.

2.6 Shared Cache Request Scheduling

In section 2.4, it was assumed that address and data input latches

and selectable data output drivers exist in every cache memory module to

allow minimum bus usage time for each request in order to achieve maximum

line sharing. It has been shown in a previous study [41] that

I

67

performance decreases as a, the address hold time on the bus (or address

bus cycle time), increases. Since aml is realistic, simpler to design

with and model and allows fewer lines (1> ap is recommended by this

previous work), the address bus cycle time is then assumed to be less

than or equal to one STU throughout this thesis, i.e. the address hold

time on the bus, azi.

Recall that a parallel-pipelined processor of order (s,p) issues p

simultaneous cache requests each STU. Of those p parallel requests, some

of them might address the same line resulting in a conflict. Even when

all p simultaneous requests address distinct lines, conflict can still

result if a request addresses a line which is still executing the block

transfer operation for a previous cache miss or a module which is still

executing the cache cycle for a previous cache request. Such a line or

module which is serving a prior request at time t is said to be busy or

active at time t. If a line or module is not busy, it is said to be idle

or inactive.

Definition 2.6.1 A cache memory request collision is said to occur when a

cache memory request attempts to access a busy line or module, or when at

least two simultaneous cache memory requests attempt to access the same

line. 0

When more than one request attempts to access the same line

simultaneously, a multiple access line collision occurs. When a request

passes through the multiple access line collision and attempts to access

r 4

I ,.

68

a busy line, a line collision occurs. Similarly, a module collision

OCCUrs when a request passes through both the multiple acccess line

collision and the line collision and attempts to access a busy module.

D2.6.2 The status 2 m oduleM t Iis Li busy or idle

at time t, and Mi busy or idle at time t. D

Both the status and the content of a memory module addressed by a

request are required to determine the outcome of the request. A request

can access module Mi,j at t if and only if Mi'j and its line Li, are both

idle at t. Hence a request is reiecte if it addresses a busy line or

module. However, if all simultaneous requests to a line refer to idle

modules on that line, one of these is accepted and the others rejected.

A request is termed an acceptable request if it addresses an idle module

on an idle line. If there is only one such request for a line, the

request will be accepted. When there is more than one simultaneous

request for an idle line, one of them is selected arbitrarily and the

others are rejected. The selected request is then accepted if and only

if it addresses an idle module, i.e. if and only if it is acceptable.

Definition 2.6.3 A request is- either successful or unsucessful

(blocked). A successful request is an accepted request which results in a

hit; an unsuccessful request is either a rejected request or an accepted

request which results in a miss. C

A request goes through the memory system in the following way.

I
69

Suppose it gets initiated on line Li at time t. Then it keeps that line

busy for one time unit in the interval (t,t+1). Following this, it

initiates a memory cycle on the addressed module Mi,j, which keeps that

module busy for c time units in the interval (t+1,t~c 1). In other

words, the line Li is busy at time t, and the module Mi,j is busy with

respect to other requests at times t 1, t+2,..., t+c-1. However,

following an initiation of a block transfer at time t on line Li and

module Mij, both Li and Mi, j are busy with respect to other requests at

time t, t 1,..., t T-1 if the implementation of figure 2.5.2(a) is used.

Hence Li and Mi,j remain busy in the interval (t,t T). If the

implementation of figure 2.5.2(b) is used, then all the modules on the

same line will be involved in the block transfer operation when that line

is used for block transfer.

One simple method of handling the unsuccessful requests is to

recycle their processes through the processor segments and resubmit them

as new cache memory requests one instruction cycle later. During the

recycling of each unsuccessful request, a control flag is set for the

process which originated the unsuccessful request to deactivate execution

of that process until the request is satisfied (successful). Once the

request is satisfied in some later cycle, the flag is reset and execution

of that process is reactivated. This method for suspending process

execution requires no distinction between an unsuccessful request due to

conflict rejection and cache miss. Actually, from the procesor point of

view, the cache memory is a resource with constant service time.

Therefore, the processor should receive the data for a read access or the

. . . .

70

completion signal for a write access by a certain deadline after a

request has been made. Otherwise, the request is unsuccessful and the

control flag is set automatically.

As discussed in section 2.2.2, deadlock might happen due to the

space contention in a system with small set sizes and a large number of

streams. A modified LRU replacement mechanism can eliminate this

deadlock possibility. Here the modified LRU replacement mechanism is a

simple LRU with the added property that once a block is brought into the

cache it does not become eligible for replacement until it has been

referenced at least once. For simplicity, whenever a request results in

a cache miss, this miss request will be rejected if the least recently

used block in the set has not been referenced at least once. In this

case, no block transfer operation will be initiated and the modified LRU

will not change state. This rejected miss request will be resubmitted

next instruction cycle. Otherwise, a normal LRU replacement mechanism is

used.

Another possible method of handling the unsuccessful requests is

that processors do not resubmit the unsuccessful requests due to cache

misses and resubmit the requests only for those requests rejected due to

access conflict. Whenever a cache miss occurs for a request made by one

particular processor, this processor is held idle until the data which

caused the miss is loaded from main memory directly to the processor.

During the waiting period, this process simply makes null passes and

makes no request.

71

In chapter 3, the first method of handling the unsuccessful requests

is assumed for developing the basic analytical models. However, the

analytical models for the second method of handling the unsuccessful

requests can be obtained by direct extension of those basic models with

some additional assumptions. This extension is discussed in chapter 4.

In summary, there are basically four different reasons for a request

to be blocked. Let h denote the cache hit ratio. A cache memory request

may be unsuccessful due to

(1) Multiple access line collision, which may occur only if p>1,

(2) Busy line collision, which may occur only if h<1 and T>O,

(3) Module collision due to a busy module on an idle line, which may

occur if c>, and

(4) Cache miss, which may occur if h<1.

2.-T System Configurations

Since the cache memory is shared by all the processors in the

system, an interconnection network is required to connect the processors

with the shared cache memory modules. A p-by-I crossbar is assumed for

this interconnection network to simplify further discussion. Although

the crossbar can route the accepted requests to the appropriate lines and

modules, some functional units are required to accept or reject incoming

requests. Basically, the functional units are needed to resolve

I.

72

conflicts and maintain the status of currently busy lines and modules.

There exist a wide variety of possible implementations of such functional

units and a particular choice depends on the design objectives. For

instance, the functional unit required to resolve multiple access line

conflict can be implemented based on a processor priority scheme or a

round-robin assignment; and the functional unit required to store and

update busy line or module status may be readily implemented by a set of

shift registers or a proper amount of content addressable memory.

Details of these implementations can be found in [41] and will not be

repeated here.

Figure 2.7.1 shows the system configuration proposed in this thesis.

Note that there is no interconnection network required between the shared

cache memory and the main memory. The main memory is automatically

shared by all processors because the cache memory is shared. In other

words, all the information which is mapped into the cache modules on one

line could be stored in a set of main memory modules associated only with

that particular line. Whenever a cache miss occurs for some module on a

particular line, the new block to be fetched will be found in one of the

main memory modules associated with the same line. Therefore, a single

bus is sufficient to connect the cache modules with their associated main

memory modules, Note that more than one main memory module interleaved

by low-order bits could be attached on each line to provide high main

memory bandwidth. The bus width at the main memory and the degree of

interleaving of main memory on each line are determined to match the

required main memory bandwidth which then defines a specified block

73

Pipe lined
Processor
with s segments
s streams)

1-1

Fiur 27. Shared ccesse raiai

Cach

I.M

74

transfer time, T. Therefore, only the block transfer time will be

considered as a design parameter. The specific main memory design

implementation, such as the main memory bus width and the number of main

memory modules per line, required to achieve T will not be explicitly

considered in further discussion. Since the research focuses on the

cache memory problem, the effects of lower levels of the memory hierarchy

involved with paging faults, etc., are not included here. Note also that

the buffers for write through are not shown in figure 2.7.1.

One might be concerned that the crossbar between the processors and

the shared cache memory requires longer time to access the shared cache

memory than the time needed for processors to access a private cache

memory. The crossbar indeed delays the turnaround time for every

successful cache memory request. However, the total system throughput

for a shared cache memory would not be degraded due to the crossbar if a

parallel-pipelined processor, which allows for this larger turnaround,

can be designed to provide the instruction execution rate which is

equivalent to that of a multiprocessor system with private cache

memories. It is clear that the time needed to route a request from a

processor through the crossbar to the referenced shared cache module is

overlapped with the pipelined processor cycle. The delay due to the

crossbar will not play any important role in the system performance as

long as the address hold time on the bus, a, is one. In this thesis, a

is assumed to be 1 a.d we assume no performance degradation due to

crossbar delay in a multiple-stream shared-cache system.

Recall that there is LRU replacement hardware namely an LRU stack,

75

associated with each set in the shared cache memory. An important

concern in the LRU stack design is speed. Since the time required for

the LRU updating process is dependent on the set size, it is desired to

design an LRU stack such that the speed is fast enough for the selected

set size.

Again, many possible implementations of such LRU stacks may exist

but only two apparent examples are shown below. Since there is plenty of

time to update the LRU stacks for cache misses, only the updating for hit

requests is considered in these examples. The first scheme employs a set

of fast counters. LRU is implemented by associating a hardware counter,

called an M register, with every block in a set. Whenever a block is

referenced, its age register is set to a predetermined positive number.

At fixed intervals of time, the age registers of all the blocks in each

set are decremented by a fixed amount. The least recently used block at

any time is the one whose age register contains the smallest number.

This smallest number can be obtained by an associative search of the

counters. A special select circuit might be required if there is the

possibility that more than one age register has the same smallest number.

An alternative implementation employs a set of D flip-flops to

maintain the status of the blocks which currently reside in the cache and

a few logic gates can achieve the updating function. For a set

containing R blocks, that is for a set of size R, log R bits will be

sufficient to address any given block in the set and a total of R log R

bits are enough to keep all the necessary information for LRU replacement

operation. Figure 2.7.2 shows one example of a LRU stack with set size

[

76

NY: CY*I)(0 CU

Figure ~CA Z.. AnZ imlWnaio fteLU ,oi~

TT

equal to 4. In this example, the four words of the stack are denoted as

X, Y, Z, and W. Register X corresponds to the top of the stack and the

register W the bottom of the stack. Register X contains the block number

XIXo, register Y contains the block number Y1YO, and so on. The number

of the block just accessed is available on lines I and 10 and the number

of the least-recently-used block is available as WiW O . There are three

control signals, that is, NX, NY, and NZ, each of which controls/its

corresponding block in the LRU stack. NX is 1 if the just accessed block

is not block number X; otherwise, NX is 0. NY and NZ are similar.

Whenever a request results in a hit, a hit clock is generated immediately

to control the updating process. Each of these three control signals

together with the hit clock determine if the corresponding block should

be shifted to -the right in the LRU stack. The number of the Just

accessed block is loaded into the leftmost pair of D flip-flops every

time a hit in this set occurs. The contents of the other pairs is

shifted to the right until the previous position of the just accessed

block is reached. The rightmost pair of D flip-flops always indicates

the number of least-recently-used block in the set associated with this

LRU stack.

Practically, cache memory control can be implemented by using

various memory devices such as RAM, CAM, or a combination of both. The

lookup tables for a set associative cache organization can be achieved in

two different forms, that is, explicit lookup table or implicit lookup

table. A set associative cache with an implicit lookup table can be

easily implemented by using RAM with a word width of R tags, where R is

I-

78

the set size. Figure 2.7.3 illustrates this implementation with R equal

to 2. A cache word contains word i from block 1 and word i from block 2

of the given set. The tags for both block 1 and block 2 can be stored

together with the data in the same cache word. However, in this case,

the tag is repeated for each data word. This tag repetition can be

avoided if these two tags are stored in some other cache word which can

be read out simultaneously with the data. Thus, a fetch from the cache

will pull out the two data words in which the requested data could reside

plus the two tags associated with that data. The tag from a request's

effective address is simultaneously compared to both of the tags read

from the cache directory. The result of that comparison will result in

gating word i from block 1 or word i from block 2, or neither in case the

data is not in the cache. Although some comparators and a multiplexer

are needed, no expensive CAM chip is required. The comparison itself can

be slow since the result is not needed until the cache cycle is complete.

Note also that whether an accepted request results in a hit or miss is

determined after the cache cycle has been completed.

For a set associative cache with explicit lookup tables, a

combination of RAM and CAM devices can be used. The lookup tables are

usually implemented by CAM because of the fast parallel associative

search required; the cache modules themselves can be implemented by RAM.

Since p parallel pipelined processors issue p simultaneous requests each

STU, a centralized explicit lookup table shared by all processors will

degrade the system performance drastically due to the intensive access

conflicts at the lookup table. Hence the explicit lookup tables have to

7 79

[TAGi1 TAG2 Iwrdi blocki Iwordl block2

TAG
f rom -- G

* add re ss

Figure 2.7.3 An implicit lookup table implemented by CAM chips.

80

be decentralized. One part of the lookup table can be associated with

each line or each module as shown in figures 2.7.4(a) and (b),

respectively. Since very little time is needed to process a parallel

associative search in a CAM, it is assumed that the cycle time of a CAM

lookup table is transparent, i.e. it is included in the address hold

time on the bus. Then, from the performance point of view, the designs

of figures 2.7.4(a) and (b) are equivalent. The implementation of figure

2.7.4(b) will give higher performance than that obtained from the

implementation of figure 2.7.4(a) if the lookup table cycle time is

greater than one STU. This difference is due to the fact that the table

on each line shown in figure 2.7.4(a) poses a limitation on the

acceptance of requests: each line can accept at most one request every

lookup table cycle instead of one every STU. For simplicity, the time

interval needed for checking whether a request is a hit or miss is

assumed to be transparent. This assumption can be applied to both the

cycle time of a CAM lookup table or the time period needed to complete

the comparison and selection functions in figure 2.7.3. It was assumed

that no line will accept any request during a block transfer operation on

that line. Hence there is enough time to update the lookup table for

cache misses. A word ia the explicit lookup tables contains both a tag

and the physical address of a block in the referenced module. in this

case, whether an accepted request results in a hit or miss is determined

before the cache cycle starts.

81

1 p ji
Pipelined I
Processors

Explicit Lookup
Table

Memory

* Main Memory

Figure 2.7.4(a) Shared cache with one explicit
lookup table per line.

82

1 p

* Pipelined
* Processors

P x I Crossbar Explicie Lookup
_______........ _ Table

ki-O Shared

Cache

mMemory

Main Memory

Figure 2.7.4(b) Shared cache with one explicit
lookup table per cache module.

83

2.8 Concluding Remarks

In this chapter, we have discussed cache memory management policies

and shared-cache memory organizations. We have shown that a centralized

lookup table is not suitable for multiple-stream shared-cache computer

systems due to potentially high lookup table access conflicts. We have

also shown that a distributed lookup table for fully associative and

sector mapping mechanisms may cause a multicopy problem in the local

lookup tables and a lookup table maintenance problem. Thrashing and

deadlock may occur in direct mapping due to the high possibility of cache

block contention among streams. However, set associative mapping allows

a distributed lookup table and does not have the above undesirable

features. In addition, the set associative mapping mechanism is

cost-effective and performs almost as well as fully associative mapping

if a sufficiently large set size is used. We suggest that the set

associative mapping with an LRU replacement algorithm for each set be

used in shared-cache systems.

We have investigated two methods of handling write misses, namely

write allocation and no-write allocation. Several schemes of updating

the main memory have been discussed. Due to the effect of architectural

differences between shared cache and private cache on handling of

write-miss and updating the main memory, we suggest that the

write-through with buffering updating scheme and the no-write allocation

strategy be used in shared cache systems and the write-back with

buffering updating scheme and the write allocation strategy be used in

private cache systems.

I.

_ _ _ _ _ _ _ _ - • ' t:. -' --- ~, *

AO-A124 387 SHARED CACHE ORGANIZATION FOR MULTIPLE-STREAM COMPUTER Z/

SYSTEMSID) ILLINOIS UNI V AT URBANA COORDINATED SCIENCE

LAB C Y EH JAN 81 R-_904 N00039-8O-C-0556

UNCLASSIFIED F/G 9/2 NL

Ehhhmmmhhh

mohImmhhhhhlo
momhmhhhhmmhhl

11111 L2O 28
I M, m L3 5

uILuI 336

11111.25 ill 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- I963-A

- ---- -----

84

Furthermore, the application of the L-M memory organization to our

shared-cache memory has been discussed. In order to keep the complexity

of cache memory mapping and table lookup within reasonable bounds, a

memory interleaved by sets has been introduced. Two possible

implementations of addressing interleaved by sets have been presented.

The choice between these two implementations involves tradeoffs between

the block transfer time and the amount of tag storage required.

Finally, we presented a general description of shared-cache memory

request scheduling and overall system configurations. The considerations

for realistic implementation of some hardware functions, e.g. LRU

stacks, are also discussed.

The functional parameters of'a shared-cache memory design have been

specified for our purposes in this chapter. In chapter 3, the

performance of shared-cache memory systems is analyzed for two distinct

cache models. A discrete Markov approach and a probabilistic approach

are developed for both models. In addition, a probabilistic model for

private-cache systems is also developed.

85
4!.

CHAPTER 3

PERFORMANCE ANALYSIS

3.1 Introduction

In this chapter, the analytic models are developed based on certain

assumptions about program referencing behavior. The assumptions which

are common to all the models of this research are summarized in this

section. Any further assumptions made for each particular model are

discussed individually as the analysis of each model is performed. The

parameters explicitly related to system performance and those used for

modeling are also examined and summarized in this section. Analytical

models for a shared-cache multiple-stream system with an implicit lookup

table are discussed in section 3.2. In section 3.3, the performance

analysis of a shared-cache multiple-stream system with explicit lookup

tables is carried out. Finally, the performance of a multiprocessor

computer system with private cache memories is evaluated in section 3.4.

In a parallel-pipelined processor of order (s,p), we assume that p

simultaneous memory requests are issued to the shared cache memory system

every segment time unit. For analytical simplicity, it is further

assumed that the addresses of the requests are independent and uniformly

distributed among the N identical cache memory modules. Therefore, for

86

the shared-cache with L-M memory organization, the probability that a

request addresses some particular module is 11N. Similarly, since lines

are identical and independent, the probability that a request addresses a

particular line is 1/ * Since the sequence of requests made by a

pipelined processor is formed by interleaving requests from sp

instruction streams, each stream in the processor issues one request

every s STUs. This interleaving tends to make the randomness assumption

of the analytical model more realistic. Also, since the number of

segments, s, is greater than or equal to the cache cycle, c, a memory

module which is executing a previous request from an instruction stream

would have completed its execution when the next request from the same

instruction stream arrives. Hence there is no execution overlap between

instructions of the same stream and data dependency within a stream will

not affect the stream performance.

The assumption of independence and randomness of the reference

patterns requires that unsuccessful requests be discarded. The

independent request assumption is tested in the simulation models in

which real program traces are used. The method of handling unsuccessful

requests in the simulation models is to cause the process with an

unsuccessful cache memory request to make a non-computing (or null) pass

through the processor segments for one instruction cycle and to resubmit

the same request the next cycle. In such a case, the process is blocked

until its request is satisfied. The simulation results are then compared

with the analytical predictions to determine the inaccuracy caused by the

random independent request assumption.

87

Another important assumption made for all analytical models is that

the cache hit ratio is independent of cache access conflict. Although

cache memory access conflicts indeed affect the reference patterns, the

hit ratios should not be disturbed significantly by the access conflicts

if a sufficiently large cache size is used. As with the working set

concept for a paging system, a block should reside in the cache for a

while before it is removed. This assumption separates the cache hit

ratio and the cache access conflict into two independent phenomena and

simplifies the analytic modeling significantly. The inaccuracy caused by

this assumption will also be checked by simulation and discussed in

chapter 4.

In summary, the assumptions comUon to all our analytic models are as

follows:

(7) The request sequence consists of independent references.

(2) Processors operate synchronously.

(3) The processor request rate, * , equals one (implies s 0).

(4) Cache hit ratio is independent of cache access conflict.

-. The functional parameters of a shared cache memory design were

described in chapter 2. Given this set of functional parameters, the

system performance is then dependent on many component parameters which

I specify the physical sizes of the components. The following list

contains the component parameters related to the system performance of a

shared-cache multiple-stream computer system.

I LI ...7. .,,.4

88

(1) Block
size.

(2) Set size.

(3) Total shared-cache memory size.

(4) Number of pipelined processors, p.

(5) Degree of multiprogramming per pipelined processor, s.

(6) Number of lines within shared cache memory, A

(7) Number of cache memory modules per line, m.

(8) Cache memory cycle time, a.

(9) Block transfer time, T.

It is very difficult to develop a satisfactory analytic model which

contains all of the above nine parameters. However, those nine

parameters are not independent of each other and can be classified in the

following three categories: (A) those, including items 1, 2, 3, 4 and 5,

related to the shared cache hit ratio; (B) those, including items 1, 7

and 8, related to the block transfer time, 9; and (C) those, including

items 4, 6, 7, 8 and 9, related to the cache access conflicts. By using

the above relationships between parameters, the parameters required to

perform the modeling can be reduced to the following six parameters:

(1) Cache hit ratio (h).

(2) Number of pipelined processors (p).

(3) Number of lines within the shared cache memory (U).

(4) Number of cache memory modules per line (m).

(5) Cache cycle time (c).

(6) Block transfer time T).

-89

Note that the total number of cache modules, N, is equal to t times

m. Due to the complexity of the architecture, the relationships between

parameters in category (A) are impossible to obtain by a purely analytic

approach. Simulation is required to determine those relationships from

which the performance differences between alternative configurations can

be accurately determined. Therefore, for a given set of values for the

component parameters of a shared cache memory, such as block size, set

size and so on, hit ratio is a function of the workload environment, such

as p, s and program behavior, and can be determined by simulation runs

with real program traces used as the input data. For analytical

purposes, hit ratio is then left unevaluated and is treated as an

independent model parameter. The analytical models are oriented toward

-developing the probalt 2r afl2iafle-,1 E, for a typical shared cache

memory request. The performance measurement, CPU u, can easily

be derived from PA and h.

The performance analysis of shared cache memory systems is carried

out using either discrete Markov models or probability based theorems.

The Markov models belong to a class of time-homogeneous finite-state

. arkov Chains (58]. The probabilistic models use a conditional

probability concept by which bounds on performance can easily be derived.

A probabilistic model for multiprocessor systems with private cache

memories is also presented in this chapter.

[

90

3.2 Shared Cache Memory with an Implicit
L Table

A shared cache memory with an implicit lookup table stores the block

tags and data together within the cache modules which can be implemented

by RAM chips. In this case, whether an accepted request results in a hit

or miss is checked after the cache cycle has been completed as

illustrated in figure 2.7.3. For simplicity, it is assumed that no cache

module can accept any new request before the result of the previously

accepted request has been determined. Although the comparators and the

selection circuit (see figure 2.7.3) need not be physically built inside

the RAM chips, a cache module will be busy in the interval (t,t+c) if it

accepts a request at time t. Therefore the cache cycle, c, is the

minimum time period required between two successive requests accepted by

one cache module. The block transfer time T, which is a function of

block size, main memory cycle and cache cycle, is the time period

required to fetch a block from main memory to the cache. Since c and T

implicitly characterize the speeds of cache and main memory, (c,T) is

then defined as the cycle characteristlcs. Since all lines in an L-M

shared cache memory system are identical and independent, a single line

model, instead of a total system model, will be sufficient to analyze

system performance [41]. This line decomposition technique simplifies

the analysis of the system significantly.

A formal definition of the probability of acceptance is given below

to clarify further discussion.

91

nti 11 The sly"X state robabit gf accep t a PA(cTp),

is the steady state probability that a request issued by a

parallel-pipelined processor of order (s,p) will be accepted by an (1,m)

memory configuration with cycle characteristics, (c,T).

It will be seen that s does not affect performance in this model, as

long as s is sufficiently large. Furthermore, the model is developed for

general k and m.

3.2.1 Discrete Markov Model

Recall that a write-through updating scheme was assumed for the

shared cache emory system, no copy back is necessary for a replaced

block when a miss occurs. Hence, a cache module can start the block

transfer operation immediately after a miss has been detected. The block

transfer time, T, in this case is the time period from detecting a miss

until the block transfer operation is completed. Therefore, a module and

its associated line will be busy for T time units immediately after a

miss occurs in this module. The remaining modules on this line cannot

accept any new request during this block transfer period because the line

is busy.

Since there if no queue assumed in the shared cache memory to buffer

the requests which result in cache miss, those requests have to be

rejected if the block transfer operation cannot be initiated immediately

to serve the cache miss. Furthermore, one might be concerned that a

i.i

92

cache miss on some line should initiate a block transfer operation if and

only if all the modules on that line are idle, otherwise the request

which results in a miss should be rejected. However, this idea may cause

a miss looo which essentially is a deadlock situation. For example,

consider two requests ki and k2 which reference modules mi and m2,

respectively. Assume that both modules mi and m2 are on the same line

and both requests ki and k2 result in cache misses. Suppose k, arrives

at time t and starts a cycle on m i . Less than c time units later k2

arrives and starts a cycle on m 2 - When request k i is determined to be a

miss, module m 2 is busy and request kI will be rejected. Assume further

that request k i will be resubmitted before module m2 completes its cycle.

Therefore, when request k2 turns out to be a miss, module mi is busy

again and request m2 will also be rejected. The same process may

continue forever and these two requesto lock each other out. In order to

avoid the miss loop, a block transfer operation is initiated immediately

after a iss is detected.

Note also that there may be some busy modules on a line when a iss

occurs on that line. All requests in process within busy modules on a

line will be aborted when an earlier request causes a cache miss on that

line. These requests are revised to be considered as rejected requests

for simplicity of analysis.

Definition 3.2.1.1 The rejected requests corresponding to aborted cache

cycles on a line caused by a cache miss on that line are called aborted

requests. 03

1.

93

First we develop the line state space of the shared cache memory

syscem for the case p=l. In this section, we assume c> 1 since c=1 is

degenerate and trivial.

Definition 3.2.1.2 The module state at time t is

- (null), if the module is idle at t,

if the module is busy at t and has been busy for r STUs,

where r is an integer such that I Sr SceT-1. D

If 1 Sr So-i, then the module is busy at t for the cache cycle

because it accepted a request r STUs ago. However, if c r !c. T-1, then

the module is busy at t for the block transfer operation because it

accepted a request r STUs ago which resulted in a cache miss. Observe

that the state of a module which accepted a hit request, i.e., a

successful request, c STUs ago is 0 . If a module accepts a request

which results in a miss, this module will then be busy for c T STUs.

Since there are m modules on a line, the states of all m modules on the

line represent the state of the line.

Definition 3.2.1.3 A line state, X(t), at time t is the set union of

all module states at time t for all modules on the line in question. For

convenience, the line state is enclosed in "()". []

Notice that only nonnull states of modules on the line appear

explicitly to specify the state of the line. The line state only

94

identifies whether some module on the line is in each state, and not

which particular modules are in which state. Specific module information

is not needed due to the uniform and independt request assumption.

Furthermore, there can be at most one module on a line in any one

particular nonnull state. Thus there are no repeated nonnull module

states and a simple set union of module states gives the line state. If

there is more than one busy module on the line at time t, the module

states are separated by comas. For instance, consider the line state of

a line at t which has two busy modules on it, one of which accepted a

request one STU ago and the other, two STU ago. The line state at t for

this line will be denoted by (1,2). For convenience, the module states

of a line state will be listed in ascending order of busy time. Hence

(3,1) will be written as (1,3). Moreover, if all modules on a line are

idle at t then the line state is denoted by the empty set, 0 .

Given the state of the line at t, it is necessary to determine the

line state at time t+1. To make this determination, it is necessary to

understand the change of module states with time. Given the module state

of a module at time t, the module state at time t+1 can be evaluated if

it is known whether a request is made to and accepted by that module and

whether the previously accepted requests on the same line result in hits

or misses. Hence for a given module state, the next module state can be

obtained as follows.

Definition 3.2.1.4 If the state of a module at t is 0 , then next

module state (at tWl) is

I
95

2{1}, if a request which addressed the module at t was accepted, or

= 0 otherwise; i.e., either no request addressed the module at t, or a

request which addressed the module at t was rejected due to a busy

line collision. 11

Therefore, a module remains in the null state unless it accepts a

request at time t whereupon it will become busy and remain busy either

during the interval (t,t~c) or during the interval (t,t~c+T) depending on

whether this accepted request results in a hit or miss, respectively.

For a busy module, the next state can now be evaluated as follows:

Definition 3.2.1.5 Given that the state of a module at time t is (r),

where r is an integer such that 1 <r <c+T-1, the next module state is

={r 11, if r <c-1 and no other busy module on the same line detects a

miss, or if c-I <r <T+c-1, or if r=c-1 and the module in

qvistion detects a cache miss, or

0 0, if r=c+T-1, or if ruc-1 and a hit occurs in the module in

question, or if r -c-1 and a miss is detected in any other

module on the same line. 03

Observe that a busy module cycle will be aborted if any other module

on the same line detects a miss before this module completes its cache

cycle. The next state of an aborted module is then 0 regardless of its

current state. For a non-aborted module, once it accepts a request, it

goes through the state sequence (11, (2),..., fc-lI, 0 , if the accepted

request results in a hit; otherwise a miss is detected when the module is

L!
-.-

96

in state 0-1 and it goes through the state sequence (11, (2},...,{c-1),

{C), ...,{C+T-1), 0 . Hence the maxixin utilization of a module is one

accepted request per c STUs. Only a module in the module state 0 can

accept a request. It need not be known whether any request addressed the

module in order to evaluate the next state of a busy module. Any request

made to a busy module is rejected.

Determining the next line state is as straightforward as determining

the next module state. However some definitions are needed here to

clarify the presentation.

Definition 3.2.1.6 If H r P X(t) such that c Zr Sc++T-1, then X(t) is a

D Ji n state, otherwise it is an ide JLa uI n. C

Definition 3.2.1.7 An idle line state, X(t), is a potential acceptance

state if 1 P X(t), otherwise it is a nonac tance state. Furthermore,

an idle line state, X(t), is called a checking state if c-1 e X(t). Q

The request corresponding to the module with state 1 in a potential

acceptance state is a p accepted reues. Whether a

potentially accepted request is an accepted request is dependent on

whether all the other busy modules on the line are processing hits. If

any other busy module in X results in a Miss, this potentially accepted

request will be aborted and becomes a rejected request. Therefore, a

potentially accepted request is an accepted request if and only if all

the other busy modules in X are processing hits. Obviously, the

I
97

potentially accepted request in =(1) is an accepted request. A

checking state can be either a potential acceptance state or a

nonacceptance state. At the checking state, a result of hit or miss for

the module with state c-i is detected.

Note that there are at least two possible state transitions from a

particular idle line state, X(t): one is to a potential acceptance state

and the other is to a nonacceptance state. Three possible state

transitions exist only from a checking state: If a hit results, the state

may go to either of the two next idle line states mentioned above;

otherwise it goes to the next busy line state WO(c). Only two posasible

state transitions exist from noncheaking idle line states. For a busy

line state, the line is busy for the block transfer operation and will

only make a transition to its successor busy line state (or the null

state if %=(T~c-1)) whether or not a request addresses the line.

In order to develop the Markov model required to analyze the shared

cache memory conflict problem on a line, the line state space is

investigated. However, we need to know the probability of transition

from one state to another in order to compute the probability of being in

each state. The cardinality of a state is useful in obtaining the

transition probabilities.

!- Definition 3.2.1.8 The number of elements or the cardinality of. line

aia t , R(t)l, is the number of nonnull module states in the line

state.

1.

98

Note that the cardinality of a busy line state is one. Since all

the aborted modules on one line have the module state 0 and will not be

listed, only the module which causes the cache miss will be listed in the

line state. Although the m modules on one particular line may be all

involved in a block transfer operation at the same time if the

implememtation of figure 2.5.2(b) is used, a busy line state with one

element is sufficient to describe the line state because none of the m

modules on the line can accept any new request during the block transfer

operation.

Recall that when a request references an idle module on an idle

line, the request is potentially accepted, causing the line state to make

a transition to a potential acceptance line state. Similarly, a line

state makes a transition to a nonacceptance line state if no request

referenced the line or a request which referenced the line was rejected.

The transition probabilities can then be obtained with the aid of the

foilowing definition and theorems.

Definitio 3.2.1.9 The probability If transition, Pij, is the

conditional probability of going from a given line state Xi , at time t,

to its successor line state Xj p at time t 1. Rewriting this statement

in probability notation, piJZp(J / i). 0

Theorem 3.2.1.1 The probability of a request being rejected due to

multiple access line collision with one or more of the p-i other

simultaneous requests is

!

99I
P -1t- 1 - (1- l)P 1 L

" l P

Proof: Since there are I lines in the shared cache memory system, a

request will reference a particular line with probability 11t. Thus

(1-1/ 1)P is the probability that no request references a particular line

and 1-(1-1/1)P is the probability that there is at least one request to a

particular line. The expected number of distinct lines referenced by p

requests, i.e. the line bandwidth, is then [1-(1-1/)3L . The

probability PI is then 1-line bandwidth/p. D

Note that 1-PI is a closed form representation of Ravi's

results[371. Chang [59) showed the equivalence of 1-P1 and Ravi's

result. Strecker (19) derived the same result by using a different

approach. Briggs [41) also proved this result.

Lemma 3.2.1.1.1 The cache memory request rate seen by a particular line

in the shared cache is

P(1'P) i p, - - (I- --

q A

I.

Pr o.: From theorem 3.2.1.1, it is clear that p(1-P 1) requests pass

through the crossbar every STU. These p(1-P 1) requests are the requests

seen by the I lines. Since they all reference different lines and all

ILI

100

lines are identical, the probability that a particular line will be

referenced by one of these requests, i.e. the request rate seen by this

particular line, is p(1-P 1)/A = 1-(1-1/1)P- 9

Theorem 3.2.1.2 The probability of transition from an idle line state

(t) to its successor potential acceptance state is

=-XI
Pa() qh, if c-1l

m- 1 1
S--- otherwise

Where Iki is the cardinality of the line state X(t).

Prc) Suppose that the idle line state, X(t), is not a checking state.

Then request which addresses a line in state X(t) will be potentially

accepted if the request addresses an idle module on the line. The number

of idle modules on the line represented by X(t) is M-1I, where lXI is

the number of busy modules on the line. Given a request to the line, the

conditional probability of requesting any one of the idle modules on the

line is (m-IX)/m. Since the probability of requesting the line is q,

the probability of a request referencing some idle module on a particular

idle line is q((m-t XI)/m]. Therefore, Pax(m-I XI)q/m if the referenced

idle line state, X(t), is not a checking state. 13

Otherwise, X(t)is a checking state and Pa*C(m.I kI)/mjhq because a

request is potentially accepted at a checking state if and only if the

I
101I

module with state c-1 results in a hit and the conditions above also

aapply.

Corollar 3.2.1.2.1 The probability of transition from a checking

state, X(t), to its successor busy line state is

Pb(X) - I -h

Proof: By definition, an idle line state makes a transition to its

successor busy line state if and only if the idle line state, X(t), is a

checking state and a miss results. 03

Theorem 3.2.1.3 The probability of transition from an idle line state,

X(t), to its successor nonacceptance state is

Pn() -h - Pa(), if c-1e

- 1 - Pa(X), otherwise

Po Note that P a (%) Pn(X)2I for all the idle line states except

the checking states. For a nonchecking idle line state, nonacceptancer
implies either rejection of a request to the line or no request arrival

to that line. For the checking states, Pa(%) Pb (%) Pn(X)21. A

checking state makes a transition to its successor busy line state if a

miss results, a transition to its successor nonacceptance state or its

successor potential acceptance state if a hit results. Since P b),1-h,

102

Pn (X):h-Pa(%) follows. 0

Theorem 3.2.1.4 The probability of transition from a busy line state,

X(t), to its successor busy line state (or to 0 if X(t)z(T~c-1)) is one.

Proof: Since X(t) is a busy line state, there is no successor potential

acceptance state hence the result follows.

For given cycle characteristics, (c,T), a line state diagram is

readily constructed by following the above definitions and transition

probabilities. For example, a line state diagram for cycle

characteristics (c,T)=(3,10) and m :2 is shown in figure 3.2.1.1, where '

indicates the potential acceptance states.

Theorem 3.2.1.5 The total number of distinct line states for cycle

characteristics (c,T) is

Total number of distinct line states - 2 + T, for m k c-i

i) + T, for m < c-l

0 Si m

Proof: For m -c-1, every idle line state except the null line state and

the checking states can generate two new successor states: one is the

next nonacceptanbe state and the other is the next potential acceptance

103

(C,) (3. 10)

1-q q Vh q (2

Figure 3.2.1.1 Line state diagram for shared cache with
an implicit lookup table and cycle characteristics

(c,T) - (3,10).

Ii

104

state. Therefore, the idle line states excluding the null line state

actually form a binary tree structure with tree height c-2. The number

of states contained in this binary tree is 20-1-1. (T 1) accounts for

the T busy line states plus one null line state. Hence the total number

of distinct states is 2c'I T for m <c-1. The number of busy line states

is still T for m c-I. However, for m <c-1, there are at most m busy

modules in each idle line state. Therefore, the total number of distinct

idle line states is (c-1
O!i*A i

The probability that a particular line accepts a request, denoted as

PAI (c,T,p), can be found by solving the Markov model developed in this

section. The following theorems help us to evaluate the system

probability of acceptance, PA(c,T,p), for the shared-cache L-M memory

organization with cycle characteristics (c,T).

Theorem 1.2.1.j For the L-M shared cache memory the steady state

probability of acceptance, PAA (c,T,p), that a particular line at a

particular STU accepts a request is

PA(csTsp) P LI

where S is the probability of being in line state .

I
105!

Proof: A potentially accepted request is an accepted request if all the

other busy modules on the same line are processing hits, otherwise this

potentially accepted request will be aborted. Therefore, the probability

that a particular potential acceptance state, X(t), accepts a request is

the probability of being in that state times the probability that all the

other busy modules on the same line result in hits. The latter

probability is simply h1XI-l, where 1XI is the cardinality of the line

state X(t). Then, PA (c,T,p) is this probability of accepting a request

summed over all the potential acceptance states of the line being

modeled. 03

Theorem 3.2.1.7 The steady state probability of acceptance of a

particular request in the L-M shared cache memory organization is

PA(c Tp) I IPAI(CT,p)/p

Proof: All the I lines of the L-M shared cache memory organization are

identical and independent. Hence APA (c,Tp) is the expected total

number of the accepted requests per STU, i.e. pPA(c,T,p).

Note that the line state diagram generated by the Markov model

developed in this section is an ergodic Markov Chain because every line

state can be reached from any other line state. Therefore, the existence

L. of a unique equilibrium solution for this model is guaranteed [581.

106

Corollary 3.2.1.7.1 The probability of success of a particular request

in the L-M shared cache memory organization is

PS (c,Tp) - h PA (c,T,p)

Obviously a request is successful if the request is accepted and results

in a hit.

The example of figure 3.2.1.1, (c,T)=(3,10), can then be solved as

follows.

Let P % denote the probability of being in the line state X. There

are only two potential acceptance states shown in figure 3.2.1.1, namely,

state (1) and state (1,2).

Hence PA (cTp) - P A (3 , 0 ,p) - p1 + hp, 2

From figure 3.2.1.1, the following equations can easily be obtained.

'C- 1-'~p +hm-mq4.)
p0 1qmpo + P2 + P1 7 (1)

P1 I qpO + P2 (2)

m-mq-+q m-mq+2q
P2 m ,- 1+ h ,)P,2 (3)

P3 (1-h) [P 2 + P1 , 2] (4)

mq-q mhq-2hq
p - P (5)1,2 m + m 1,2

From equation (5)

m-mhq+2hq mq-q
SP,2 -- P i

10T

mq -q
p

1,2 m-mhq+2hq P

From equation (2)

qp~= - mhq-hq m-mq4q4hq
qpO Pi -m) 7;hq+2hq I

2 2 2 22 2 2 22 2
(mn -2m hq+3hqm-2mhq -fin hq -rnh q 4flq -4h q)p1 ,

- inq (i-mhq+Zhq)

Note that PO + p1 + p2 + p1 ,2 + Tp3 = 1

Solve for p,

qm(in-ihq+2hq)

(1-2hq+2q~qT-Thq)m 2+(3hq-h 2q 2 4iq 2+Thq 2 Th 2q 2)mhq 2 4i q2

IqN (N-Nhq+2htq)

P,(L-2hlq+2Aq+.4qT-ThAq)N 2+(3hht q-Z h 2q 24tiA 2q 2+ThA q-2Th 2 1 q 2)N+ 3hq 2+1 h 2q2

LqN (N-Nhq+2h~q)

From equation (3)

in-inq-q (ih-ihq+2hq) (iq-q)

P2 in + i(in-ihq+2hq) PI

m-mq4q-+hq
P2 - i-mhq+2hq' Pl

From equation (4)

I.m-mq-tq-hq mq-q
-3 (1h ' -mhq+2hq' + i-ihq+2hq ~P

(1-h) (in-hq)

-3 m-inhq+2hq Pi

-im

108

IqN (N4h&q)
Since AA 11 h A

and 1PA - PPA'

1 (1-P 1)N(N4htq)
then PA '

where A - (2+12Aq-12hq)N2 +(3h, 2 q-.1lh2 t2 q 2+llhA 2 q 2)N+A 3q 2h(h),

and (1-PI) [1-(1-1/1)P].t/p.

Only one parameter, c, instead of both c and T, needs to be given in

order to construct the Markov state diagram and obtain the closed form

solutions. For example, if the state (12) in figure 3.2.1.1 is replaced

by (c+T-1)=(T 2), then a line state diagram for (c,T)-(3,T) is obtained.

By going through the same computation process, a closed form solution

which contains T as a parameter can be obtained.

As can be seen from theorem 3.2.1.5, the number of states in a line

state diagram increases with both c and T. The total number of distinct

line states increases linearly with T but exponentially with c.

Therefore, for a large value of c, it is computationally tedious to

obtain the exact solution. In practice, cache speed should be very fast

in order to match the processor speed. Hence reasonably small values of

o should be sufficient to model all important cases.

3.2.2. Probabilistic Model

No closed form solution for PA(c,T,p) exists for general (c,T). We

109

must kn r the value of c in order to solve the Markov state diagram for

the probability of acceptance, PA(C,T,p). The technique used requires

the computation of the steady state probability of being in certain line

states. In this section, an alternative approach, which can give more

insight into the effects caused by individual blocking conditions, is

discussed.

In chapter 2, it was shown that a request may be blocked for one of

four different reasons. For convenience, those four reasons are repeated

here. A request made to the shared cache memory system may be blocked

due to

(1) Multiple access line collision (only if p >1),

(2) Busy line collision (only if h <1 and T >0),

(3) Busy module collision (only if c >1), or

(4) Cache miss (only if h<I).

Recall that the aborted requests, introduced in the last section,

are considered as rejected requests. For conceptual simplicity, the

rejections of those aborted requests are classified as rejections due to

busy line collision in the following discussion. Therefore, the busy

line collision actually includes the rejections of a request referencing

a busy line and being aborted by a miss of an earlier request on the same

line. Since the possibility of a request being aborted is considered in

the busy line collision, the rejection due to busy module collision is

only applied to nonaborted requests. In other words, not every busy

110

module is affected by the busy module collision. Those busy modules on

an idle line will not be affected by the busy module collision if any one

of them results in a miss since an incoming request will be aborted in

this case. Hence only those busy modules on an Idle line all of whose

busy modules result in hits affect the busy line collision. For

convenience, those busy modules which affect busy module collisions are

called blocking modules. By this modification of the previous

definitions of busy line and busy module collisions, the above four

blocking factors can still be applied in the following discussion without

defining new terminology.

Let P1, p2 , P3 and P4 be the probabilities of blocking of a request

due to the above four events respectively. Then the probability of a

request being blocked by the shared cache memory system can be obtained

by considering mutually exclusive and independent blocking events.

Theorem 3.2.2.1 The probability of blocking a request issued to tht .-A

shared cache memory system whose cycle characteristics are (c,T) is

P BP 1+(l-P) P2 +(1-P) (l-P2)P3+(l-Pl) (l-p2) (1-P3) 4

Notice that 1-P 1 is the probability that blocking does not occur due

to event i.

Corollary 3.2.2.1.1 The probability of success of a request made to the

L-M shared cache memory whose cycle characteristics are (c,T) is

I
i 111

PS(c,Tp)z-P B(c,T,p) 03

Obviously an accepted request results in a cache miss with

probability 1-h. Hence P 4l-h and Ps= h(1-P1)(1-P 2)(1-P 3). Note that

P1 is given in Theorem 3.2.1.1. The probability of acceptance,

PA(c,T,p), is then (1-P1)(1-P 2)(1-P 3) by corollary 3.2.1.7.1. For

brevity ?A(cT,p), PB(c,Tp) and Ps(o,T,p) will sometimes be written as

PA' PB and PS respectively.

A request will be rejected due to busy line collision if it has no

multiple access line collision, but references a busy line.

Lema 3.2.2.1 The probability of a request referencing a busy line (or

being aborted by a previous miss) is

(T4c-1) (1-h'PPA

P2 - A

Proof: A potentially accepted request will be aborted by any other busy

module which results in a miss on the same line while the potentially

accepted request is still in process. This rejection is considered as a

busy line rejection. If a busy module with the checking module state,

c-I, results in a miss, this module will not only cause the line to be

busy for the following T time units but will also cause rejection of all

the requests potentially accepted by that line during the last c-1 time

units. Therefore, a cache miss occuring on a line actually has the

effect of blocking all requests to that line for To-I time units. In
1.

112

other words, assuming that the line busy checker has the ability to look

forward such that when the line first accepts a request which will result

in a miss, the line becomes busy immediately after accepting the request

and remains busy for Tec time units. Therefore, the expected number of

busy lines, E(BL), is the expected number of accepted requests which will

result in misses over a period of T+e-1 time units. Under the

independent request assumption, we have E(BL) = (T~c-1)(1-h)pP . The

probability, P2 = E(BL)/I. 0

Corollary 3.2.2.1.2 The expected number of idle lines is

fidle = L -(expected number of busy lines)

a A -(T4c-Il)(1-h)pPA

- .= (1-P2). 0

The computation of the probability of referencing a blocking module

on an idle line, P3, is not always straightforward. However, P3 can be

generalized by the next Lemma.

Lemma 3.2.2.2 The probability of referencing a blocking module on an

idle line is

Pa E(EM/TL)
3 E(M/IL)

Where E(BM/IL) is the expected number of blocking modules on idle lines

.. i

113

and E(M/IL) is the expected number of modules on idle lines. Notice that
S.E(M/WL) idle m --Am(I-P 2)=N(I-P2). 1

The derivation of E(BM/IL) for given (c,T) can be made from the line

state diagrams. Since all . lines are identical and independent, the

line state diagrams for all I lines are identical and independent. Hence

we can model the entire system by modeling one line. At steady state, if

p requests are issued, P requests are accepted by the system. These

accepted requests cause the addressed lines to make transitions to

potential acceptance states. Since the request references are uniformly

distributed over the I lines, the accepted requests will be uniformly

distributed over all I lines. The following definitions are made to aid

in the derivation of E(BM/IL) for the system.

Definition 1.2.2.1 For the system, E(M) is the expected number of lines

at any time instant which are in the line state X.

Definition 3.2.2.2 S(c,T) is the set of nonnull idle line states in the

line state diagram for cycle characteristics (c,T), i.e.

S(c,T) = I X 0 and if re % then r <c}

LSm 3.2.2.3 At the steady state, the expected number of accepted

requests per STU of a whole system with cycle characteristics (c,T) is

I.

114

- Z hI'Il' E(X)

Proof: Multiplying the equation given in theorem 3.2.1.6 by I gives

£PAI(cTp) - hIX'l IPX

Then, substituting E(%) for IP , using Definition 3.2.2.1, and P A for

SPAI ' using Theorem 3.2.1.7, this lemma follows immediately.

Lemma 3.2.2.4

E(B/IL) (hill E(X) IxI)
X S(c,T)

Proof: The expected number of modules on lines with nonnull idle line

states is

~ E(X) 17,)
X e S(c,T)

However, some of those modules may not affect busy module collisions.

Only blocking modules affect busy module collisions. The busy modules on

a line are blocking modules if and only if they all result in hits.

Otherwise, an incoming request to this line will be aborted by some busy

module which results in a miss on this line. Thus hI I must be used as a

multiplicative factor in the above formula. 0

! I

115

The probability of acceptance, PA(cTpp), of the cycle

characteristics (3,10) can readily be obtained by using the probabilities

for the four different blocking factors developed in this section.

From figure 3.2.1.1 and lemma 3.2.2.3

E(l) +hE(l,2) - PPA (1)

Let p. denote the steady state probability of being in state X. Since

4px a E(%), then the relationships between p and Pj are also the

relationships between E(i) and E(j).

Therefore,

-(1,2 = mq-q E(l)

m-mhq+2hq

and

m-mq+q+hq
E(2) - m-mhq+2hq E(l)

Substituting for E(1,2) in equation (1),

m-mhq+2hq

m-hq PPA

From lemma 3.2.2.4

E(BM/IL) = hE(1) + hE(2) + 2h 2E(l,2) (2)

Substituting for E(1), E(2) and E(1,2) in E(BM/IL),

2hm-mhqq.+h2 q4h 2mq
E (BM/IL) m4hq - A

From lemma 3.2.2.2

E (BM/IL)
P 3 =

N(l-P
2) 2 2

2hm-mhg-+hg4h 2 4h 2MCIP P3 = N(I-P 2) (m+hq) PPA

I.

I]

116

From lemma 3.2.2.1

(T4c-1) (l-h)pPA
P2 A

12(1-h) PPA

Substituting for P2 and P3 in

A " (1-P) (-P 2) (1-P3)

and solving for PA, we have

qm(m-mhq+2hq) +qmh (mq -q)

PA "(1.i2qh+12q)m 2 +(3hqllh2 q2 +lhq 2)mtq 2 2 2

W t(1-P)N(N+h~q)

2 2 2 22 2 2 3 2
where A . (L+12tq-12h~q)N +(3h, q-llh I q +llhA q)N+3 q h(14h).

Note that the result above is identical to the result obtained in

last section.

II
117

Given a shared cache memory organization and a workload, the hit

ratio, h, of such a system can be obtained from simulation. The

probability of acceptance, PA(c,T,p), can be obtained from the analyses

developed in these last two sections. The performance measurement, i.e.,

CPU utilization, is then given as follows.

Theorem 3.2.2.2 The CPU utilization, Cu, for a shared cache memory with

implicit lookup table is

1
Cu

+ + (l-h)T"
A

where TV~ r
Proof: Let T" be the block transfer time relative to pipelined

processor cycle time, s, i.e. T"-rT/sl. Recall that an unsuccessful

request will cause the corresponding processor to make a null pass, i.e.

a noncomputing pass, through one cycle. Hence the total number of null

passes for each satisfied (successful) request is

pA (l-h) T"+(I-PA) pA [+(l-h) T"]+(I-PA) 2 PA [2+(lh) T"]

-(I-h)T"PA [+(I-PA)+(I-PA)2+... +(I'-:A) A[2 (PA) 3(-')+.

"(I'h)T"PA(I -A+IP)A dl'A [I+(I'PA)+(IPA) 2]
A (1-h

d 1

- (-h T + -

118

1-PA
PA

1
=(l-h)T"+ 7A- 1

1

where -1) is the penalty for the access conflicts and (l-h)T" is

A

the penalty for a cache miss. Therefore, the total number of passes

a request must take is

1 1

A A

1

Thus Cu 1

A

Note that this formula does not consider the situation in which

processors have to make an extra request to obtain the data from cache

after a block transfer operation has been completed. However, this

formula is still applicable to the system in which an extra request is

required because h can be adjusted. In fact, for a high performance

system, i.e. high hit ratio, the performance difference caused by this

one extra request is negligible.

The probability of acceptance, PA(c,T,p), for the cases c=1, 2, and

3, is listed in Appendix A. For c >3, the computation becomes enormous

and the result is extremely complex. In the following section, simpler

upper and lower bounds for PA(c,T,p) are derived to provide a rough

prediction of the performance.

119

3.2.3 Bounds on P.(c.T.n)

It was seen in last two sections that obtaining PA(c,T,p) for large

values of a is a formidable problem. However, upper and lower bounds can

be obtained for PA(C,T,p). These give a rough estimate for design

purposes.

Theorem 3.2.3.1 An upper bound on the expected number of blocking

modules on idle lines for a given CL,m) is

(c-i)P

Proof: Here (c-l)pPS is the total number of successful requests during

last c-i time udits, i.e. the total number of busy modules. However not

every busy module resulting from a successful request is a blocking

module. For a line state that contains more than one nonnull element, an

incoming request will be aborted due to a miss occuring in any one of the

busy modules in this line state. This rejection is considered as a busy

line collision. The probability of this rejection is included in P2 , not

in P3 " Nevertheless (c-1)pPS includes those busy modules and therefore

overestimates E(BM/IL). 03

For example, the expected number of blocking modules on idle lines

for c=3 is

E(BM/IL)=hE(1)+hE(2)+2h2E(1,2) (1)

By Lemma 3.2.2.3

E(1)+hE(1,2)PPA

LI.

120

Then hE(1)+h 2E(1,2)=pPS

In the steady state, the total number of successful requests during each

STU is equal to the total number completed cache memory cycles resulting

in hits.

Hence

hE(2) hE(1,2)=pPS

By theorem 3.2.3.1 the upper bound of E(BM/IL) is (a-1)PPs=2ppS

and adding the two equations above,

2PPs=hE(1)+hE(2)+hE(1,2)+h 2E(1,2)

=hE(1)+hE(2) 2h2E(1,2)+(1-h)hE(1,2) (2)

The difference between equation (1) and equation (2) is the last

term, i.e., (1-h)hE(1,2), in equation (2). This term shows that one

blocking module is counted in the upper bound for state (1,2) when one

module is processing a hit and the other a miss. Since the request of

module in state 1 cannot be accepted if module in state 2 is processing a

miss, the module in state 1 must be processing a miss and the module in

state 2 a hit. However, the nonnull modules on a line are blocking

modules if and only if they are all hits. Hence (1-h)hE(1,2) is the

amount of overestimation made by (c-I)pPs.

Note that an idle line state X(t) has RI blocking modules if and

only if those RJI nonnull elements all result in hits, otherwise no busy

module on this line is counted in E(BM/IL).

Corollary 3.2.3.1.1 For c 2 or ml,

121

E(BM/IL)=(c-)pP S

For cQ2 or m-l,there is no line state with more than one nonnull element.

Therefore, no request will be aboifted by any other request on the same

line and no overestimation of E(B/IL) will be made by (c-1)Ps.

Corollary 3.2.3.1.2 A lower bound on the probability of acceptance for

a given (1,m) is

IN(l-P1)

A ZN + Np(l-P1)(1-h)(Tc-l) + lph(l-P1)(C-i)

where P1 W I-[1-(i- £)p I

This Corollary follows directly by substituting (c-l)pPs for E(EM/IL) in

P3 and then plugging the formulas for P2 and P3' i.e. lemmas 3.2.2.1 and

3.2.2.2 respectively, into (-P 1)(1-P 2)(1-P 3) "

Theorem 3.2.3.2 The maximum performance memory configuration for any

(c,T) is (A,m)-(N,1) and for this configuration -

N(I-P 1)

PA ' N + p(l-P)T(-h) + (c-i)]

Proof: It is trivial to show, since increasing I cannot decrease

performance, that the maximum performance memory configuration is

Ii

122

(L,m)=(N,1). Figure 3.2.3.1 shows the line state diagram for L=N.

Notice when t=N that m=1 and an idle line cannot accept a request unless

the module on that line is idle. From corollary 3.2.3.1.1,

E(BM/IL)-(c-l)phPA. Hence P3 = (c-l)phPA/N(-P 2). Then plugginC the

formulas for P2, i.e. lemma 3.2.2.1, and for P3, i.e. lemma 3.2.2.2,

into the equation PA C (1-P1)(1-P 2)(1-P 3) and substituting N for I gives

N(i-P1)

PA(cT ' p) N + p(l-PI)[T(ih) + (c-i)] "

Although (U,m)=(N,1) is the maximum performance configuration, this

configuration is often undesirable for large N because of the cost

incurred by the increased crossbar size, p x L.

oro y32.3.2. The minimum performance memory configuration for

any (c,T) is (U,m)=(1,N) and the lower bound PA(c,T,p) for this

configuration is

N

A p[N(T-k-Th) - h (c- 1) (N-1)]

Proof: It is also trivial to show that the minimum performance memory

configuration is (A,m)x (1,N). Using E(BH/IL)-(c-l)phPA in P3, this

corollary can easily be obtained by plugging the formulas for P2 and

P3 into the equation PA (1-P1)(1-P 2)(1-P 3) and substituting N fot m. 0

mam

123

Figure 3.2.3.1 Line state diagram for shared cache with
an implicit lookup table and m -1.

124

Shared Cache Memory = Explicit Look Tables

A shared cache memory with explicit lookup tables stores the block

tags and data separately in distinct memory units. The lookup tables

contain not only the block tags but also the physical block addresses and

the specific cache modules to which they refer. CAM chips are usually

used to implement these lookup tables because of the parallel associative

search required. The cache module itself can be implemented by RAM

devices. As stated in section 2.7, part of the explicit lookup table can

be associated with each line or each module. Both these organizations

give the same performance if the cycle time of the lookup table is

transparent. The organization of figure 2.7.4(a), i.e., an explicit

lookup table associated with each line, is chosen for analytical modeling

because of its cleanness of presentation. Note that in this case,

whether a request results in a hit or miss is determined before the

actual cache cycle is initiated. Hence only hit requests need initiate

normal cache cycles.

For this model, a different cache request scheduling strategy is

assumed. A request which results in a miss will initiate the block

transfer operation if and only if all the cache modules on the line are

idle, i.e., the line is at the null state, otherwise this request will be

rejected. In other words, the hit requests have higher priority for

being served by the shared cache memory than the requests which cause

misses. This request scheduling will not cause the miss loop situation

as discussed in section 3.2.1 because a request is known to be a hit or

miss before any later request can be accepted by the same line.

125

Therefore, all the accepted requests will finish their cache cycles

without being aborted and every busy module is a blocking module. The

block transfer time, T, in this case is the time period from when a miss

is detected on a line in the null state until the block transfer

operation is completed. All the currently busy modules on the line have

to complete their cache cycles before a block transfer operation can be

initiated on the line. A request resulting in a miss to a line which has

at least one busy module on it, is simply rejected. Therefore, a cache

module will be busy in the interval (t,t+c) if it accepts a hit request

at time t and a line will be busy in the interval (t,t+T) if a miss

occurs on a line with no busy module on it at time t.

The ana].ytical approaches used to model the shared cache memory with

an implicit lookup table will also be applied to the shared cache memory

with explicit lookup tables. Some definitions have to be modified and

some results have to be rederived. Those definitions and results

developed in previous sections which still can be applied in this case

will not be repeated in the following discussions. Let P h(c,T,p) denote

the probability of acceptance for hit requests, i.e. the fraction of all

hit requests which are accepted and PAm(c,T,p) similarly be the

probability of acceptance for miss requests, i.e. the probability that a

miss request initiates the block transfer operation.

Since a miss request can be accepted only if the referenced line is

in the empty state, a miss request is more likely to be rejected by cache

memory than a hit request. This unequal probability of rejection for

miss and hit requests causes a biased hit ratio seen by the cache memory

126

system. The effect of this biased request scheduling on hit ratio is

discussed in section 3.3.3.

3.3. Discrete Markov Model

Again, in this section we assume c >1 since c=1 is degenerate and

trivial. Also, it is assumed that the cycle time of the lookup table is

transparent. Thus, the lookup tables do not pose a limiting constraint

and are not explicitly modeled in this section.

Definition 3.3.1.1 A module state at time t is

= Q(null), if the module is idle at t,

={r}, if the module is busy at t because it accepted a request r

STUs ago, where r is an integer such that 1 :r 5c-1,

={r'}, if the module is busy at t because it began a block transfer

operation r' STUs ago, where I"(r CT-i)'.

A prime (') is used only to distinguish a busy module which is

involved in a block transfer operation from a busy module which is

executing its cache cycle. Since numerical values of r can be equal to

values of r', the prime or absence of a prime is part of the state

representation in addition to the numerical value. Definition 3.2.1.2

defines the line state, X(t), for this model also. The definitions which

evaluate the next module state from a given module state are redefined as

follows.

'1

127

Definition 3.3.1.2 Given that the state of a module at t is o, the

next module state (at t+1) is

=f11, if a hit request which addressed the module at t was accepted, or

=[1"}, if at time t, a request which addressed the module resulted in a

miss and all the modules on the corresponding line were idle,

i.e., the referenced module began a block transfer operation at t,

= , otherwise; i.e., either no request addressed the module at t, or a

request which addressed the module at t was rejected due to a line

collision. 03

Therefore, a module remains in the null state unless either it

accepts a hit request at time t whereupon it will become busy and remain

busy during the interval (t,tec) or it begins a block transfer operation

at time t whereupon it will become busy and remain busy during the

interval (t,t T). For a busy module, the next state can be evaluated by

the following two definitions.

Definition 3.3.1.3 Given that the state of a module at time t is {r},

where r is an integer such that lir- c-1, the et mjod.l state is (r 1}

if r< c-1 and 0 if r=c-1. Q3

Once a module accepts a hit request, it goes through the module

states (1), (2),..., (c-1), 0. As stated before, the maximum acceptance

rate for a module is one accepted request per c STUs.

1.

128

Definition 3.3.1.4 Given that the state of a module at time t is r),

where r' is an integer such that 1% r' (T-, the next module state is

((ril)'} if r' <(T-1)" and 0 if r'=(T-1)'. 03

Clearly, once a module is involved in a block transfer operation it

goes through the module states (1'}, {2"],..., {(T-1)'), 0. Again,

determining the next line state is as straightforward as determining the

next module state. The following definitions are needed to clarify the

presentation.

Definition 3.3.1.5 If there exists r, e X(t) such that 1"

Sr 'r(T-1)', then X(t) is a busy line state, otherwise it is an idle

1=& state. 03

Observe that a busy line state contains one nonnull element with a

prime U). Once again, one element is sufficient to describe the busy

line state even though there may be more than one module on the line

actually involved in the block transfer operation. Note also that the

sequence of busy line states can only start at line state b. Since a

miss can initiate a block transfer operation if and only if the line is

at the null state, every accepted request will complete its cache cycle

without being aborted. Hence every busy module is a blocking module.

Definition 3.3.1.6 An idle line state, X (t), is an a state if

1 e Xt), otherwise it is a et at.

129

Since a hit or miss of a request is determined before it is accepted

by the line or module, the checking state defined previously no longer

exist in this case. In this model, a busy line state rejects all

requests since the line is busy for block transfer operation. A

nonacceptance state does not accept a request because either a request

references a busy (blocking) module on the idle line, or no request

references this idle line, or a request to this idle line is rejected due

to a miss. There are two possible state transitions from each particular

idle line state, X(t), except from the idle line state 0: one is to an

acceptance state and the other is to a nonacceptance state. In addition

to these two possible state transitions, there is one more possible state

transition from the idle line state (t, that is to a busy line state.

Now the transition probabilities can be obtained with the aid of the

following lemma and corollaries.

Lerma 3.3.1.1 The probability of transition from an idle line state,

)(t), to its successor acceptance line state is

Pa m

where lXI is the cardinality of the line state X(t). C

The proof of this Lemma is similar to that for theorem 3.2.1.2. Note

that every accepted request must be a hit request. Hence the probability

of aooeptinS a request at a particular idle line state is the probability

i

130

that a request references an idle module on the idle line, i.e.,

q(m-lIX)/u, and the request is a hit.

Corollary 3.3.1.1.1 The probability of transition from a nonnull Idle

line state, X(t), to its successor nonac'3eptance line state is

p n(M - 1 - P a

Note that Pa(%)+Pn(%)=i because there exist only two next line states:

an acceptance state and a nonacceptance state.

Corollary 3.3.1.1.2 The probability of transition from line state 0 to

Its successor busy line state is Pb(0)z(1-h)q and the probability of

transition from line state 0 to its successor nonacceptance state is

Pn(0)=1-q.

Proof: There are three possible next line states from the line state 0:

the successor acceptance line state, the successor nonacceptance line

state, and the busy line state. For line state , Pa(O)zhq(m-O)/mmhq.

Thus 1-hq z Pn) + Pb (). Pn(():l - q is the probability that no

request references the line at state 0 and Pb(0)=(1-h)q is the

probability that a request which references the line at state 0 results

in a miss. 03

Similarly, since there is no successor acceptance state from a busy

line state, the probability of transition from a busy line state , (t),

131

to its successor busy line state (or to 0 if (t)=(T-1)') is one.

Theorem 3.2.1.4 is also applicable in this case.

For given cycle characteristics (c,T), the line state diagram is

readily constructed by using the above definitions and one-step

transition probabilities. An example of the line state diagram for cycle

characteristics (c,T)=(3,10) and m2 c-i is shown In figure 3.3.1.1, where

indicates the acceptance states.

Theorem 3.3.1.2 The total number of distinct line states for cycle

characteristics (c,T) is

Total number of distinct line states 2 C -1 + T - 1, for m 2 c-i
C-1

- (c.) +T-.form < c-l

Proof: For m 2c-1, as before, the line states which contain nonnull

element r such that 1 5r sc-l form a binary tree with tree height c-2.

The total number of states contained in the binary tree is 2 c-1-1. In

addition, there are T-1 busy line states and one null line state. Hence

the total number of distinct line states is 2C-1T-1 for m2c-1. The

number of busy line states is still T-1 for m<c-1. However, for me<c-1,

the total number of distinct idle line states is E c-1

0 a f i

I[

132

On1) hq
1941

hq h

Figure 3.3.1.1 Line state diagram for shared cache with
explicit lookup tables and cycle characteristics
(c,T) - (3,10).

I
133

Terem 3.3.1.3 In the L-M shared cache memory, the steady state

probability, Psx(c,T,p), that a particular line at a particular STU

accepts a hit request is

P (c,T,p) = 7 P h
SA- x I le~x

where pX is the probability of being in line state X. Furthermore,

PAh (c,Tp) - PSe (c,Tp)/hp

Proof: Since there are no aborted requests with explicit lookup tables

under the selected scheduling strategy, a hit request is accepted, and

therefore successful, at a particular line each time the line enters a

state X such that 1 e X. The formula for P follows. Then IP is the

number of accepted hit requests per STU over all lines and hp is the

number of hit requests submitted per STU. The formula for PAh follows.O3

Note that the line state diagram generated by the Markov model

developed in this section is also an ergodic Markov Chain. Therefore, a

unique equilibrium solution can be obtained.

The example of (c,T)=(3,10) can then be solved as follows.

Let Pi denote the probability of being in the line state i.

From figure 3.3.1.1, we can obtain the following six equations.

m-mhqfhq
p't = (I-q)p0+ m P2+(th~qp:5 (1)

1.

12

46

rn-i
p1I qhp + -hp (2)

0m hq P

rn-mhq-+hq rn-mhq+2hq P, 4
P2, (4)l+

Pl' (1-h)qp 0 (5)

po+p 1 +p 2 +p, 2 +(T-I)p 1 ' 1 (6)

From equation (3),

rn-ihq+2hq P12-mhq-hq P

mhq-hq

P1l,2 *0 -mhq+2hq' PI

From equation (4),

rn-thq4hq rnhq-hq

2 m Pl rMn

=p 1

From equation (2),

rnhq-hq
P1 hqp + 7- p1

-m-inhq4hq

P(b mhq P'l.

From equation (5),

-i (1-h)qpo

(1-h) (m-mhg+hg)
nihV

Hence equation (6) becomes

rn-mhg+hg +11 rnhg-hq +9 (1-h) (n-mhg+hq) l -

rnhq rn-mhq+2hq nih 1

135

Solving for P1 yields

Nhqk(N- mlhq + 2Lhq)Y2

Pl = YIY2 + 2NhqY2 + Nhq9mlhq-.hq) +9(l-h)qY 1Y2

where Y1 = (N - mhq + Ahq)

and Y = (N -mhq + 21hq).

hN(1-P1) (N+hq)
PS£, = Pl

+ Pl, 1

ThN (l-P1) (N-ILhq)

Hence PS = 1

S A

and
IAh N(I-P1) (N+thq)and PAh =

A 2
where A = ON(N+Lhq) + 9(l-h)ZqYIY2 + 21 hq(N+thq)

Similarly, T can be left unspecified when constructing the line

state diagram and a closed form solution is still obtained. For example,

if the line state (9") in figure 3.3.1.1 is replaced by ((T-1)'), then a

line state diagram for (c,T)=(3,T) results and a closed form solutions

for c=3 with general T can be obtained by going through the same

computation process.

I.

3.. Probabilistic Model

In this section, the probabilistic approach is discussed. As stated

*1 i'

136

previously, a request may be blocked for one of four different reasons.

These four types of blocking factors are in a different order in this

model because of the different organization considered here. Since an

explicit lookup table is associated with each line in this case, the line

status will be checked after a hit or miss is determined for a request

which references the line. Hence a cache request may be blocked due to

(1) Multiple access line collision (only if p >1),

(2) Cache miss (only if h <1),

(3) Busy line collision (only if h <1 and T >O), or

(4) busy module collision (only if c >1).

Since no accepted request will be aborted, the busy line collision

only rejects requests because the line is busy for a block transfer

operation. Note also that the number of busy modules equals the number

of blocking modules in this case. Let PI, P2 , P3 and P be the

probability of blocking of a request due to the above four events,

respectively. Since these four events are mutually exclusive and

independent of each other, theorem 3.2.2.1 and corollary 3.2.2.1.1 can

still be applied.

Note that P2 is equal to (1-h) in this case and PI is still given by

theorem 3.2.1.1. Only the probabilities of busy line collision, P3, and
bit

busy module collision, P4, have to be rederived,

II
137

Lemma 3.3.2.1 The probability of a request referencing a busy line is

q (T-I1) 1l-h) E (0)

3 1

where E() is the expected number of lines in line state Z and q is

given in lemma 3.2.1.1.1.

Proof: Let % be the probability that a particular line is in line

state 0. Note that an idle line state will make a transition to a busy

line state if and only if a miss occurs on a line at state 0. Hence the

probability that a particular line changes from idle to busy is (1-h)qPt.

Since there are Alines in the system, the expected number of idle lines

which become busy lines per STU is (1-h)qIP,. Once a line becomes busy,

it remains bisy and rejects all newly arriving requests for the following

T-I time units. Therefore, the expected number of total busy lines,

E(BL), seen by an arriving request is E(BL) = (T-1)(1-h)qLP Since E(V)

=1p., then E(BL) = (T-1)(1-h)qE(0). By definition, P3 = E(BL)/t

(T-M)1-h)qE(0)//, •.

Since there are no aborted requests in this model, one additional

busy (blocking) module will be caused in the system by each accepted hit

request. Thus, the computation of the probability of referencing a busy

module on an idle line, P4, is straightforward.

Lemma 3.3.2.2 The probability of a hit request referencing a busy

module on an iu.-. line is

6.

138

(Cl1)PPs

4" N(1-P 3)

Proof: Since every busy module is a blocking module in this case, by

lena 3.2.2.2, P4=E(BM/IL)/E(M/IL). The expected number of idle lines is

given by corollary 3.2.2.1.2, i.e., Aidl e-(1-P3) in this case. Hence,

P4 = E(BM/IL)/N(1-P 3). Obviously, the expected number of busy modules on

idle lines, E(BM/IL), is the total number of accepted hit requests during

the last (c-I) time units. Since there are p simultaneous requests made

by a parallel-pipelined processor of order (s,p) per STU, E(BM/IL) is

then equal to (c-1)pP3* 0"

The only unknown needed to be solved for in order to obtain the

probability of acceptance of a hit request is E(0). The following lemma

aids in the evaluation of E(0).

Lemma 3.3.2.3 In the steady state, the total number of successful

requests per STU for a system with cycle characteristics (c,T) is

PPS E(X)

This is obvious since every accepted request is a successful request.

The probability of acceptance, PAh(c,T,p), of a hit request for the

cycle characteristics (3,10) can now be solved for as follows.

139

p 1 a 14-(.-l Z/p

p2-1-h

P 3 =(T-1) (1-h) qpO,

4 N(l-P 3) N(I-P 3)

From figure 3.3.1.1. and lemma 3.3.2.3,

E(l) + E(112) -p

and

E(1.2) hqE(1) + !-2hqE(1,2).
Mi M

Solving for E(1,2):

E(1,2) Mhs-hg Elui-uhq + Zhq E

Substituting for E(1.,2) in equation (1) and simpliftying,

E(l) as m-aibg+2'hgui+hq S

From figure 3.3.1.1, E(2) - E(l) and

E(l) -M1hqE(2) + hqE(dO)

- hqE(O)+ mlhqE(l)

Solvinig for E(O),

E(O) - 'nihg+hgq E(l)
inhq

a(mn-tnhg+hg) (in-ihg+2hg) Pp
nihq(in+hq)S

Henrn (in-%hg+hg)(in-ihg+2hg) PL. Nq~m+hq) h

14#0

Substituting for p. and T in P3

P = (T-1)(l-h)qpo - 9(1-h) (m-mhq+hq) (m-mhq+2hq) PAh
3 N(m+hq)

Substituting for P3 and P4 in

PAh = (I-P1)(1-P 3)(I-P 4)

and solving for PAh yields

PAh M ZN(1-P 1) (N+thq)

LN(N+Lhq)+9(I-h) ZqY1 Y2 +22 2hq(N+khq)

where Y1 = (N-mthq+khq) and Y2 = (N-mihq+2thq)

Here PAh is identical to the result obtained in last section.

In order to evaluate the performance, CPU utilization, a knowledge

of the penalties caused by a cache miss is needed. The following lemma

helps to evaluate the miss penalty due to rejection only.

LAme 3.3.2.4 The probability of acceptance for a miss request

attempting to initiate a block transfer operation is

PAm(c,T,p) M (l-P1)pO

where p is the probability of being in line state ?.

1 4 1

Proof: A miss request is accepted, i.e. a block transfer operation is

initiated, if and only if this miss request passes through the multiple

access line collision, probability (1-Pl), and references a line in state

0, probability p. . Since these two events are mutually exclusive and

independent of each other, the lemma follows. 03

Theorem 3.3.2.1 The CPU utilization, Cu, for a shared cache memory with

explicit lookup tables and the cycle characteristics (c,T) is

1

Cu
h

+ (1-h) + T" J
PAh PAM

where T = T/s•

Proof: From the derivation of theorem 3.2.2.2, it is easy to show that

given a probability of acceptance, PA' for a request, the penalty, i.e.,

null passes, caused by the access conflict is (1/PA)-'. However, in the

case of the shared cache memory with explicit lookup tables, P A is the

probability of acceptance for a hit request. Hence the hit requests will

suffer a penalty of (1/PAh)-I. Similarly, from lemma 3.3.2.4, a cache

miss has to wait for (1/PAm)-1 null passes in order to initiate the block

transfer operation. Hence the total penalty caused by a miss request is

(1/PAm)-I T". The total number of passes a random request must take is

1 1

-1)h + - 1 + T" (1-h) + 1

h 1

- + (1-h) + T"] •
Ah Am

[

14#2

For the cases c=1, 2, and 3, a summary of the probabilities of

acceptance for hit and miss requests are listed in Appendix B. These

calculations require reference to the corresponding Harkov state

diagrams, at least for evaluation of E(), and no useful analytic bound

on performance has been found for the explicit lookup table models.

3.3.3 Dynamic Hit Ratio

Due to the complexity of evaluating the hit ratio function, the hit

ratio is left unevaluated and treated as a specified parameter in our

analytic models. The hit ratios for various parameters can be obtained

from simulation. The hit ratio (miss ratio) obtained from simulation for

a given program and a particular set of parameters is called static hit

ratio (static miss ratio).

For shared cache with explicit lookup tables, a miss request can be

accepted, i.e. a block transfer operation is initiated, by a line only

if that line is in the empty state. Therefore, a miss request is more

likely to be rejected by this cache memory system than a hit request.

Due to this biased rejection for miss and hit requests, more miss

requests will be resubmitted than hit requests. Then a lower hit ratio,

called dynamic hit ratio, rather than the static hit ratio is seen by the

cache memory system. The dynamic miss ratio is similarly defined.

In sections 3.3.1 and 3.3.2, the derivation of the probabilities of

acceptance for miss and hit requests, namely PAh and P , involves an

143

independent parameter, i.e. the given hit ratio h. This hit ratio h

should be the dynamic hit ratio actually seen by the cache memory system

for the reason mentioned above. Therefore, the parameter h which appears

in the transition probabilities and the probabilities of acceptance for

explicit lookup table model is the dynamic hit ratio, instead of the

static hit ratio. However, the hit ratio h which appears in the CPU

utilization formula given by theorem 3.3.2.1 is the static hit ratio

since the number of misses which actually cause a block transfer

operation is assumed unchanged. Note that miss and hit requests are

equally likely to be rejected for the implicit lookup table model.

Therefore, the dynamic hit ratio equals the static hit ratio for implicit

lookup table model.

Let h and hd denote the static hit atio and dynamic hit ratio,

respectively. The relationships between static hit ratio and dynamic hit

ratio for the explicit lookup table model can be derived as follows.

Since a line state, X, with 1 e % accepted a hit request one STU ago and
a line state, X, with 1' P X accepted a miss request one STU ago, the

static hit ratio can then be expressed as

P

- etx or e x

where p is the probability of being in line state X.

By substituting hd for h in the transition probabilities developed

L

OEM
Now-------------t

144

in section 3.3.1, the relationships between h and hd can be solved from

line state diagram for a specified cache cycle, c. For a given c, hd can

be expressed in terms of h .0 The performance prediction for the explicit

lookup table model can be computed by replacing h with hd in PAh and

PAm and then plugging PAh' PAM and hzh in the CPU utilization formula.

Since this relationship is dependent on c, no general solution of

dynamic hit ratio for arbitrary c is obtained. A summary of the

relationships between static hit ratio and dynamic hit ratio for the

cases c=1, 2, and 3 is listed in Appendix B.

3.4 Private Cache Memories

All the previous sections in this Chapter deal with the performance

analysis of shared cache memory systems. In order to compare the

performance difference between a shared cache memory and private cache

memories, a probabilistic model for multiprocessor system with private

cache memories is discussed in this section.

Figure 1.5.1 shows the organization of a multiprocessor system with

private cache memories. Since each stream has its own private cache and

since there is no overlap within a stream, there is no cache access

conflict. Furthermore, a request which results in a cache miss will

immediately cause the cache controller to generate a request, called a

main memory request, to the main memory for fetching the new block.

However, since the main memory is shared by all the processors in the

145

system, a main memory request may be rejected due to access conflict.

Therefore, the system performance is dependent not only on the hit ratio

but also on the access conflict at main memory. As before, the hit ratio

will be left unevaluated and considered as a parameter which can be

obtained from simulation. The analytical model here is oriented toward

developing the probability of acceptance, PAM, of a given main memory

request for the private cache system with a shared main memory.

In addition to the assumptions made in section 3.1, more explanation

is necessary to clear up some possible ambiguities in this system. Note

that the p parallel processors in this case are nonpipelined processors.

Therefore, one instruction (processor) cycle time, instead of one STU, is

considered as the basic time unit. The processor request rate, *, is

assumed to be one as before. Thus each processor makes one cache request

every instruction cycle. Since the processor request rate, *, equals

one, the miss ratio, 1-h, becomes the request rate for main memory

requests from each processor. The occurrence of a cache miss is

independent of previous misses in the same private cache and in the other

private caches. Also it is independent of all the other simultaneous

cache misses. From the main memory point of view, since each processor

executes its own independent stream, the addresses of the main memory

requests are randomly distributed. For analytical simplicity, it is

assumed that the addresses of the main memory requests are independent

and uniformly distributed among the M main memory modules. The

independence and randomness assumption for the main memory reference

patterns allows rejected requests to be discarded in the model. In

ii!

146

practice, those rejected requests will be resubmitted the very next

cycle. The effects of the resubmitted requests will be tested in the

simulation model discussed in chapter 4. Note that if the main memory

modules are interleaved by low-order bits, the crossbar is then switched

very often during the block transfer operation. Thus, a main memory

interleaved by high-order bits or interleaved by blocks is assumed.

Once a main memory module accepts a request, the main memory module,

the associated line, and the associated connection path in the crossbar

are busy for T" time units, where T" is the total number of instruction

cycles needed to complete a block transfer operation. Therefore, a

request to the main memory may be rejected for either of the following

two independent and mutually exclusive events.

(1) Multiple access line collision (only if p >1), or

(2) Busy (main memory) module collision (only if h <1 and T" >0).

Let PI and PII be the probabilities of rejection of a main memory

request due to (1) and (2), respectively. The probability of a main

memory request being accepted, PAM, is then (I-PI)(I-PII). The following

theorems are developed to evaluate PAM.

LemA 3.4.1 The probability of a main memory request being rejected due

to multiple access line collision is

147

M 1-h
P - - [1- (1 - M)p

where (1-h) is the main memory request rate and M is the number of main

mmory modules.

Proof: Since the request rate of each processor is (1-h), there are a

total of (1-h)p requests issued every instruction cycle. Obviously a

particular memory module in a particular cycle will be referenced by a

request with probability (1-h)/M. Similar to the derivation of theorem

3.2.1.1, the memory bandwidth is M{1-[l- (1-h)/M)]P}. The probability of

acceptance, 1-PI= (memory bandwidth)/(expected number of requests per

cycle). 3

Theorem 3.4.1 The probability of acceptance, PAM, of a main memory

request for a multiprocessor system with private cache memories is

(1 1-h)p]

(1-h)p M

PAM 1-h1 + [1 - (1 -7 P] T"-1I

Proof: There are an average of (1-h)p main memory requests issued

every processor cycle. Of these, a total of (1-h)p(1-P1) requests pass

through the multiple access line collision. A particular main memory

module is referenced by one of those requests with probability

.

[i

46

148

(1-h)p(1-PI)/M. Therefore, the request rate seen by each main memory

module is (1-h)p(1-P1)/M. Once a main memory module accepts a request,

it will be busy for T" time units. Figure 3.4.1.1 illustrates the Markov

state diagram for a main memory module. The definition of the module

state is similar to Definition 3.3.1.1. Note that only an idle module

can accept a request. The module states of nonnull elements represent

the busy module states. Since 0 is the only idle module state, the

probability of being in state 0, p0 , is 1-PIi. From this state diagram,

p0 can easily be found and is given as follows:

1

P0 (1-h)P(1-p i)

1-h 11 + (- (P 1

HH

Note that if cv z(1-h)p(1-P1)/M, then P. zl/[lecr(T"-1)J is the

probability of acceptance of a request for a single resource, where a is

the resource request rate and T" is the resource cycle. Emer [60) has

derived this result.

One assumption used to derive theorem 3.4.1 is that the main memory

request rate, i.e.' static request rate, is (1-h). However, this rate

149

Ii

CO.hI1)l-R2)

Figure 3.4.1.1 Memory line state diagram for multiprocessor
with private-cache systems.

i i_

150

requires adjustment because a main memory request will be resubmitted if

it is rejected. Furthermore, once a main memory module accepts a request

made by a particular cache controller, this cache controller would not

make any new request during the following T" time units. With these two

effects, the actual request rate, i.e. dynamic request rate, seen by the

main memory may be altered. The following theorem gives the dynamic

request rate seen by the main memory by considering the request rate

changes due to rejection and acceptance.

Theorem 3.4.2 For a given static request rate, (1-h), the dynamic

request rate seen by the main memory is

1

1

1+VPAM + ITT)PA

Proof: Assume that the total number of instruction cycles needed to

execute a job is R R' if there is no main memory access conflict and the

main memory cycle is less than one instruction cycle, where R of the R+R"

processor cycles involve requests. Then the request rate is

R/(R R')=(l-h). However, a request will be resubmitted the very next

cycle if it is rejected due to memory access conflict. On the average, a

request takes /PAM instruction cycles in order to be accepted, where

PAM is the probability of acceptance of a request. During each null

pass, the same blocked request is resubmitted. Therefore, R requests

151

will be extended to a total of R/PAM requests. Once a request made by a

particular processor is accepted, no new request will be made by this

processor for the following T" time units if the memory cycle time is T".

Since every request will eventually be accepted, the total number of

instruction cycles in which there is no request is R'+RT". Hence the

dynamic request rate seen by the memory is

R
PAM

S+ R' + RT"

PAM

1

Since 1-h a R/(R R'), then a = .

Note that the dynamic request rate,c , can be larger than or smaller

than the static request rate, (1-h). If T" = 0, then cy = 1/{I+[(1/1-h) -

1]PA}, which is the result given in [60). In this case, since the block

transfer time is zero, the above theorem reduces to the case in which the

system contains processor and main memory with processor request rate 1-h

and main memory cycle time one. Note cy is always larger than 1-h for

T"=0 because every rejected request will be resubmitted which increases

the request rate. At another extreme, if h=0, then y = 1/(1 T"PA). In

this case, the theorem reduces to the case in which the unadjusted

processor request rate is one and main memory cycle time is T". Now o is

I.

[i

152

always aller than one, since once a request made by a particular

processor is accepted, this processor will not make any new request until

the accepted request finishes its cycle.

This actual request rate tries to correct the assumption made in

theorem 3.4.1. Note that O is a complex function of P AM' Thus this

equation is most easily solved by iteration. By combining theorem 3.4.1

and theorem 3.4.2, the corrected solution for PAM can be obtained by the

following two iterative equations provided an initial condition for 'i is

given: M +(.

-[1+ --)p

P - aip

PAM1+I 1 +[I- 1 -i p [T" - 1

1

ti+l 1S+ T"P + (- 1)Pi+
AMi+l

1 i+

given 0 " I - h.

Theorem 3.4.4 The CPU utilization, Cu, for a multiprocessor system with

private cache nmemories is

1

Cu 1

1 + (1-h)[-'A- 1 + T"]

Proof: This is obvious since the penalty for a miss is (I/P A)-IT".

153

For the private cache memories, there is no access conflict at the cache

level. Therefore, there is no penalty for a hit cache request. 03

3.5 Concluding Remarks

The analytic models for two distinct cache organizations, namely

shared cache with an implicit lookup table and shared cache with explicit

lookup tables, have been developed in this chapter. A Markov approach

and a probabilistic approach have been presented for both models. Due to

the complexity of evaluating the hit ratio function, the hit ratio is

left unevaluated and treated as a specified parameter in our analytic

models.

For shared cache with an implicit lookup table, a block transfer

operation is initiated on a line as soon as a miss is detected on that

line. Any incompletely served request on the same line when a miss

occurs is simply aborted. Since miss and hit requests are equally likely

to be accepted, program static hit ratio is equal to the dynamic hit

ratio in this case.

However, for shared cache with explicit lookup tables, a higher

priority of acceptance is assigned to hit requests. A block transfer

operation can be initiated on a line only if that line is in the empty

state. In this case, a miss request is more likely to be rejected than a

hit request. Due to the biased rejection for miss and hit requests, the

dynamic hit ratio seen by cache memory system is different from the

154

program's static hit ratio. We have shown the relationship between

static hit ratio and dynamic hit ratio.

Since the line state space increases exponentially with cache cycle,

c, no general solution for performance has been obtained for arbitrary c.

However, we have derived upper and lower performance bounds for the

implicit lookup table model, but not for explicit lookup table model.

A probabilistic model for private cache systems has also been

developed.

In chapter 4, the hit ratio function is evaluated for various

parameters by simulation. The simulator is driven by real program

traces. In addition to evaluating the hit ratio function, the inaccuracy

caused by the assumptions about program referencing patterns for our

analytic models is also evaluated by comparing the analytic predictions

with simulation results. Furthermore, some dynamic space sharing

behavior is observed and the effects of access conflict on performance

are discussed for a wide variety of parameter values.

-19"M

155

CHAPTER 4

ANALYSIS OF RESULTS

4.1 Introduction

Due to the complexity of the effects of various parameters on hit

ratio, hit ratio was unevaluated and considered as a given parameter in

analytic models. In this chapter, the hit ratio function is investigated

for a range of parameters and several different workloads by simulation

experiments. In the previous chapter, it was assumed that blocked

requests were discarded so that the independent and random request

assumption could be Justified in the analytical models. The analyses in

last chapter were also based on the assumption that the cache hit ratio

is independent of cache access conflict. In this chapter, these

assumptions about program behavior will be verified by comparing the

analytical predictions with simulation results. Therefore, the purposes

of simulation experiments are to study the hit ratio function and to

validate the analytic models. In addition to the discussion about the

simulation results, the effects of varying the A , N, p, c, T, T and h

parameters will be discussed based on analytic predictions. The

performance prediction for processors with load through capability is

illustrated by a direct extension of the analytic solutions developed in

the previous chapter. Furthermore, the performance comparisons between

I.
1.

. II II I II II Ii

156

shared cache and private cache for some sets of parameters are given.

For convenience, from now on, the analytic models of the shared cache

memory systems with implicit lookup table and explicit lookup tables will

be called model A and model B respectively.

Trace-driven simulators written in SIMULA (61], for model A and

model B, have been developed. Four real program traces are used in the

simulation study to generate address sequences for cache memory requests.

They are GAUSS, EIGEN, ECOBOL, and CCOBOL. The first program, GAUSS,

performs Gaussian elimination on a 20x20 matrix to solve a set of

simultaneous linear equations. The second program, EIGEN, determines the

eigenvalues of a 14xI4 matrix. Both GAUSS and EIGEN were written in

FORTRAN. ECOBOL is the trace of an execution of a COBOL program and

CCOBOL is the trace of a compilation of a COBOL program. All the traces

were collected by running these programs on an 1BM/360 system.

Although the multiple-stream systems investigated in this thesis are

MIMD computer systems as introduced in chapter 1, they can be further

classified into the following four different operating environments:

Independent Instruction - Independent Data (MID), Shared Instruction -

Independent Data (SIID), Independent Instruction - Shared Data (IISD),

and Shared Instruction - Shared Data (SISD). A MIMD computer system

operates in the IIID environment if there is no shared instructions and

data among streams. This is the usual situation when each processor

executes its own program and data. However, if all processors execute

the same program, but each operates on a different data set, the SIID

operating environment pertains.

157

In this research, IISD and SISD operating environments will not be

investigated in the simulation studies because no program trace

corresponding to these environments is available. However, IIID and SIID

operating environments can be simulated by the four available program

traces and their effects on hit ratio will be studied. For the IIID

operating environment, shared cache may result in higher performance than

private cache due to dynamic space sharing. In addition to the dynamic

space sharing, shared blocks, i.e. blocks containing shared information,

- may further improve the performance for shared-cache systems operating in

the SIID environment. To simulate a p-processor system, p program traces

should be used. In our simulation study, each program trace is evenly

divided into four trace sections and thereby up to 16 processors can be

simulated simultaneously.

The IIID operating environment can then be simulated by assigning

each processor its own unique trace section and an associated offset

oonsant. The effective addresses requested by each processor are

generated by adding its offset constant to each address in the associated

trace section. The offset constants are chosen such that the effective

address spaces of both instructions and data among the p trace sections

are disjoint.

The SIID operating environment can be simulated by assigning each

processor a unique trace section of a single program trace and an

associated offset constant. For each processor, its offset constant is

added to the data addresses in the associated trace section to generate

the effective addresses. The offset constants in this case are chosen

158

such that the effective data address spaces of the p processors are

disjoint. This offsetting technique in trace-driven simulation has been

used by some previous authors [40] to investigate the memory interference

problem in multiprocessor computer systems.

The effects of different operating environments on the hit ratio

will be discussed in section 4.3. However, the IIID operating

environment is used in the remainder of this chapter. In section 4.4,

performance comparisons between shared cache and private cache for a

range of parameters are carried out to validate the analytic models.

Due to the fact that the architecture of the IBM/360 uses various

instruction lengths and various length data representations, the traced

addresses are not all at the word boundaries. In the simulation study,

it is simply assumed that each word contains four bytes and both cache

capacity and block sizes are integral multiples of the word size. A

cache request is generated by adding the offset constant to the traced

address and then ignoring the two least significant bits. For example, a

cache memory with block size 8 means each block contains 8 words, or 32

bytes.

A high rate of cache misses usually happens during the initial

period of the execution of a particular program because of an initially

empty cache. As the cache begins to fill, the initial high rate of cache

misses drops rapidly and soon reaches the value for a full cache [46].

Cold-start miss ratios are miss ratios that are measured with an

initially empty cache memory (62). Warm-start miss ratios are miss

159

ratios that are measured with a cache which is full with the blocks

associated with the process being executed. Cold-3tart miss ratios are

useful in studying certain aspects of multiprogrammir. .erformance

because cache miss ratios are affected by task switching. Ca the other

hand, warm-start miss ratios should be measured if behavior of a program

running uninterrupted for indefinitely long periods of time is being

studied. Hence, all miss ratios referred to in this chapter are the

warm-start miss ratios.

Let the time period between the beginning of a simulation run with

an initially empty cache and the time instant to measure the warm-start

miss ratio be the initial period. Usually this initial period is the time

period needed to fill the cache memory. However, the cache memory may

never be filled in our experiments. Sinc6 the set associative mapping

mechanism is used, the address space of a program may not be mapped onto

all the cache blocks. In this simulation study, the initial period is

determined heuristically by experiment. It was found that the time

period of the first five thousand distinct requests is sufficiently long

for a 1K cache memory to avoid the effect of the initial condition.

Therefore, the time period of the first five thousand distinct requests

is used as the initial period for a 1K cache memory in our simulation

experiments. Since the initial period is a function of the total cache

capacity, the initial period is proportionately increased when the cache

* capacity is increased. For example, the time period of the first twenty

thousand distinct requests is used as the initial period for a 4K cache

memory.

IiI

160

In addition to the initial conditions, the total length of the

simulation run, including the initial period, is important for properly

interpreting the measured data. The simulated system may not reach the

steady state if the simulation is terminated too early. However, it is

expensive for a long simulation run. In our experiments, the simulation

was performed for a certain number of instruction cycles, i.e. number of

cache requests, because of simulation costs. This termination time is

also heuristically determined by experiment. For each trace section, it

was found that there are no significant changes in the measured

performance data after a total of ten thousand distinct requests,

including the initial period, has been made. Therefore, the termination

time of the simulation running under a single stream environment is the

time when the ten thousand-th distinct request is made. Note that a

parallel-pipelined processor of order (s,p) can execute sp distinct

instruction streams concurrently. Those sp requests made within one

instruction cycle are interleaved among the streams so that each comes

from a distinct stream. Therefore, the termination time for the multiple

stream cases is a function of the total number of streams, sp, in the

system. In this study, the termination time is proportionately increased

when the number of streams is increased. For example, to simulate the

case of four streams sharing a K cache memory, the initial period is set

to the time when the five thousand-th distinct request is made and the

termination time is set to the time when the forty thousand-th distinct

request is made.

General definitions of hit ratio and miss ratio were introduced in

II

161

chapter 1. This definition was applied in chapter 3 under the

independent request assumption of the analytical models. However, in the

simulation experiments, the blocked requests are resubmitted, instead of

discarded, until they are satisfied. The hit ratio is then a function of

the number of resubmitted requests if the previous definition of hit

ratio, i.e. the fraction of all cache memory requests resulting in a

hit, is used in analyzing the simulation data. In order to exclude the

effect of those resubmitted requests on the hit ratio, the hit ratio in

the simulation experiments is defined as the fraction of all distinct

cache requests (not including the resubmitted requests) resulting in a

hit. The miss ratio is similarly defined. The CPU utilization in the

simulation experiments is defined as the fraction of total cache requests

(including the resubmitted requests) resulting in a hit. This is

equivalent to the fraction of time that CPU is busy doing useful work.

In summary, four different operating environments and program traces

have been introduced in this section. Cold-start and warm-start

measurements were also discussed. The initial period and simulation

termination time have been determined. In the following discussion, the

write-through updating scheme is assumed for shared-cache systems and the

write-back updating scheme is assumed for private-cache systems, except

when stated otherwise. Except for section 4.3, the IIID operating

environment is assumed in the rest of this chapter. Note that it is

impractical to show the combined effects of all parameters pictorially on

a two-dimensional graph. A simplification, which is adopted here,

studies the effect of each variable on performance, independently. Note

4-

162

also that the hit ratio (or miss ratio) in the remainder of this chapter

means the static hit ratio (or static miss ratio), except when stated

otherwise.

4.2 The Effects of Block Size, Set Size and Total Cache Capacity on Miss

Ratios

For a complicated system with many parameters, the effects of a

particular parameter on the system performance can be investigated by

varying this parameter while holding the other parameters constant. In

this research, the effects of the hit ratio and the cache access conflict

on system performance are treated as two different issues and studied

separately. In the analytical models, they are separated by the

assumption of independence between them. However, in the simulation

experiments, the effects of cache access conflict on system performance

can be eliminated by setting c=T=O and p=1 while the effects of hit ratio

on the system performance are investigated. Note that for p=1, the

number of streams in the system can be specified by s, the number of

segments per pipelined proessor. Thus the effects of various parameters

on the hit ratio can be studied by setting c=T=O and p=1.

In multiple-stream shared-cache computer systems, the hit ratio is a

complicated function of the number of streams, the block size, the set

size, the total cache capacity, and the program characteristics. The

effects of program characteristics on the hit ratio are discussed in the

following section. In this section, the effects of varying the set size,

163

the block size, and the cache capacity on the hit ratio for a fixed

number of streams are investigated. Note that the number of segments, s,

in each pipelined processor has no effect on the cache access conflict

[413. The effect of the number of streams, sp, on the hit ratio can be

determined by varying s with p=1 because no cache access conflict, i.e.

c=TO and p=1, is considered. In the following discussions, s is simply

assumed to be four, except when stated otherwise.

Figure 4.2.1 shows the miss ratio vs. cache capacity provided the

set size and block size are both fixed at 8. In this case, the first

section of each program trace is used to simulate the IIID operating

environment. The cache capacity is the total cache size measured in

words. Therefore, each private cache has cache size of a quarter of the

specific cache capacity. The miss ratio for the private-cache system is

the value averaged over the four streams. For this workload, figure

4.2.1 shows that shared cache always performs better than private cache.

This miss ratio improvement of shared cache may be caused by dynamic

space sharing and/or the write through policy used for shared cache. The

effects of dynamic space sharing and write policies on miss ratio will be

investigated separately in section 4.3. This figure shows that the

largest difference in miss ratio between shared cache and private cache

happens at a cache capacity of 1K. This difference becomes smaller as

the cache capacity either increases or decreases from 1K words. For

small cache capacity, the difference of miss ratios is small because all

cache blocks in both shared cache and private cache become saturated.

For large cache capacity, this difference is small because the cache

Ii

164

1.2 - Private

-Shared

Block size =8

.10 Set size =8

.08

-%

.06

'a%
U%

.04

.02 %

.00
512 1024 2048 4096 81.92 $

Cache Capacity

Figure 4.2.1 Effect of cache capacity on miss ratio.

165

memories may contain most of the information needed for execution and the

cache hit ratios approach one for both shared cache and private cache.

Similar observations have been pointed out by Coffman and Ryan [29].

The impact of block size is shown in figure 4.2.2. The label at the

right side of each curve indicates the cache capacity. As can be seen in

most cases, for a fixed cache capacity, the miss ratio tends first to

decrease as the block size increases and then increases after a minimum

is reached. Especially in smaller caches, the miss ratio significantly

decreases as the block size increases. This happens because a smaller

cache depends more on the prefetching, i.e. block fetching, effect for

its performance. Since small caches may not be able to keep program

loops, the miss ratio improvement for large block sizes is primarily due

to block fetching which matches program sequentiality and spatial

locality. For a fixed cache capacity, the increase in miss ratio results

from the blocks becoming so large that too few blocks are contained in

the cache. If the cache capacity increases to always contain the same

number of blocks, the miss ratio will continue to decrease as block size

is increased (with no adjustment in T). As shown in figure 4.2.2, for

example, the block size corresponding to minimum miss ratio for private

cache increases from 4 to 8 as the cache capacity increases from 1024 to

2048. These observations are also consisent with the results of previous

studies [45,46].

Figure 4.2.2 also shows that the shared cache performs significantly

better than the private cache in this case. More specifically, the

relative miss ratios of shared cache with respect to private cache with

L

166

.20 Private

SShared

Set size 8

.15

.1051

.05

204

204

.0

2 Block Size 3

Figure 4.2.2 Effect of block size on miss ratio.

167

various block sizes are 0.426 to 0.541 for a 2 K cache, 0.595 to 0.777

for a 1 K cache, and 0.714 to 0.852 for a 256-word cache. The minimum

miss ratios for shared cache with 512, 1024 and 2048 cache capacities are

0.093, 0.043 and 0.015, respectively. However, the minimum miss ratios

for private cache with 512, 1024 and 2048 cache capacities are 0.109,

0.067 and 0.03, respectively.

As illustrated in theorem 3.2.2.2 and theorem 3.3.2.1, the

performance is not dependent on miss ratio only, but also on the block

transfer time T" measured in processor cycles. The block transfer time

is a function of the block size and the bandwidth of the main memory.

Larger blocks imply the need for longer block transfer time for a fixed

main memory bandwidth. Hence, the block size corresponding to the

minimum value of miss ratio for a given cache capacity may not result in

optimum performance. To optimize the performance, the block transfer

time T", and miss ratio (1-h) have to be minimized. The tradeoffs

between miss ratio and block transfer time will be discussed in more

detail in section 4.10.

Figure 4.2.3 depicts the effect of set size on miss ratio with fixed

cache capacity and block size. The miss ratio decreases as the set size

increases. The largest improvement in miss ratio occurs in going from

set size one to set size two for both shared cache and private cache.

The curve for private cache becomes flat as long as the set size is

larger than four. The previous studies (45,463 have the same conclusion.

Kaplan and Winder (463 also showed that the effect on miss ratio is very

little as the set size increases from four to fully associative.

168

.08

Priva te

.07 ---- Shared

Cache capacity =2048

Block size =8

ps 4

.06

".05

.01

.00
1 81

SetSiz

Fiur 42. Efet fse szeonmis ato

!L

169

Although not shown here, this asymptotic behavior should be understood

because the space contention in each set becomes less for the large set

sizes.

As expected, the miss ratio for shared cache is more sensitive to

the set size than that for the private cache. This sensitivity is due to

the fact that each set in the shared cache is shared by all streams in

the system. Since the space contention within each set for shared cache

is more severe than that for private cache, shared cache performs worse

than private cache for set size equal one, i.e. direct mapping. Note

that the deadlock situation caused by space contention within a set, as

described in section 2.2, does happen in the experiment if a conventional

LRU, instead of the modified LRU, replacement algorithm is used in the

shared cache when set size equals one. However, figure 4.2.3 shows that

shared cache always performs better than private cache as long as set

size is larger than one. The miss ratio of shared cache tends to reach

the asymptotic, i.e. fully associative, value at larger set sizes. In

figure 4.2.3, the relative miss ratios of shared cache with respect to

private cache vary from 1.233 to 0.443 as the set size increases from 1

to 16. Therefore, from the performance point of view, relatively larger

set sizes are preferred in the shared cache systems.

4.3 The Effect of Operating Environment and Write Polioy on Miss Ratio

In general, cache performance is highly affected by program

characteristics. However, the effects of program characteristics on missI

I.

170

ratio for shared cache are unclear. It was assumed that the write

through updating scheme is used for shared cache, but the effect of write

through on performance is also unclear. In this section, the effects of

different operating environments, write policies, and program

characteristics on miss ratio are investigated. The following studies

are based on the observations of our simulation experiments. More

research will be suggested for those phenomena for which no firm

conclusion is obtained from observations.

Assume that there are four streams in the system, i.e. sp=4 . An

IID operating environment with all streams being executed having similar

program characteristics can be simulated by assigning each processor a

different section of a particular program trace and an offset constant to

create disjoint address spaces. For convenience, let x be an integer

number such that 1 :x :54. Then the four program traces can be specified

by the distinct values of x as follows: x-1 for CCOBOL, x=2 for GAUSS,

x=3 for ECOBOL, and x=4 for EIGEN. Let y represent different write

policies and operating environments. For shared cache, the operating

environments of IIID with write back, IIID with write through, and SIID

with write through are specified by setting y equal to A, B, and C,

respectively. Then, various experiments can be specified by (x,y).

Figures 4.3.1 and 4.3.2 illustrate the effects of write policies and

operating environments on miss ratio. In these graphs, all four streams

are selected from a particular program trace specified by x f6r each

experiment. The dotted lines show the performance for private cache with

an IIID operating environment and write back updating scheme.

171

.18(x,y): x -1, for CCOBOL
- 2, for GAUSS

y -A, for IIID, WE
.16 - B, for IIID, WT

- C, for SIID, WT
Dotted Lines: Private, WB

.14 .Block size - 8
Set size 8

.12 (1,B)

2.10

.~08

.06

04

S.06

.00
512 1024 2048 4096'

Cache Capacity

Figure 4.3.1 The effects of write policies, space
sharing and operating environ~ments on miss
ratio for CCOBOL and GAUSS.

172

.14
(x,y): x =3, for ECOBOL

- 4, for EIGEN

.12 % y =A, for IIID, WB
.1 = B, for HID, WT

% % Dotted Lines: Private, WB

% Block size - 8
.10 - % Setsize -8

I.08

06 % .0

.04%%

.02

.00
512 1024 2048 4096

Cache Capacity

Figure 4.3.2 The effects of write policies and
space sharing on miss ratio for EIGEN
and ECOBOL.

173

Note that the difference between (x,A) and (x,B) for a given x is

the miss ratio improvement of write through over write back. The

percentages of write accesses for EIGEN, GAUSS, ECOBOL, and CCOBOL are

8.8%, 9.2%, 28.6%, and 13.1%, respectively. As can be seen, for shared

cache, write through always performs better than write back. However,

the amount of miss ratio improvement by write through is not proportional

to the amount of write accessing. In the case of a write access followed

by some read access within a very short period of time, write through may

not improve the miss ratio if both write and read accesses reference the

same block. Hence, the performance for write through may depend not only

on the amount of write accessing but also on the strategy used for

storage allocation.

The effect of dynamic space sharing on miss ratio can be shown by

the miss ratio difference between (x,A) and private cache, i.e. the

dotted lines. Clearly, shared cache may not always perform better than

private cache. The diagrams show that space-sharing is good for GAUSS

and EIGEN but not for ECOBOL and CCOBOL. For GAUSS and EIGEN, the

largest miss ratio improvement due to space-sharing occurs at a cache

capacity of 1K. However, in most cases, the shared cache with write

through performs better than the private cache with write back.

Recall that a SIID operating environment is simulated by assigning

each processor its own trace section of a particular program trace and an

associated offset constant. The offset constant is added only to the

data addresses in the associated trace section to generate effective

addresses such that the effective data address spaces of the processors

Li1

1 7J7

174

are disjoint. Then the difference between (x,C) and (x,B) for a given x

illustrates the effect of shared code on miss ratio. Figure 4.3.1 also

shows this effect for GAUSS and CCOBOL. Sharing of programs

significantly reduces the miss ratio for these two program traces even

with different sections. This significant performance improvement may be

caused by many commonly used subroutines or by some common subroutines

which are used very often in both programs. Simulation was performed to

measure the extent of sharing. After a block is loaded into the cache by

a process, it may be referenced by other processes. Such references,

namely, references to a blcok by processes which did not load that block

in the first place, were measured. All such references to all blocks

were measured as a percentage of total number of hits. These percentages

are 25.2%, 27.2%, 30.4%, and 30.4% for GAUSS with 512, 1024, 2048, and

4096 cache capacities respectively. The percentages are 7.5%, 12.2%,

19.8%, and 23% for CCOBOL with 512, 1024, 2014, and 4096 cache capacities

respectively. The graph shows that the amount of miss ratio improvement

due to shared code is not totally dependent on the amount of shared code.

GAUSS has a higher percentage of requests referencing the shared blocks

than that of CCOBOL. However, the amount of miss ratio impovement due to

shared code is larger for CCOBOL than that for GAUSS. This result may be

explained by noting that the miss ratio improvement due to shared code is

also dependent on the distribution of the references to the shared code.

A larger amount of shared code may not improve the miss ratio

significantly if the intervals beiween references to the same shared

block are very large. In addition, the miss ratio improvement due to

shared code is dependent on the number of blocks required to duplicate

175

code for private cache systems.

Figure 4.3.3 shows the miss ratio comparisons between shared cache

with different write policies and private cache with write back for the

workload of mixed program traces. In this case, the four streams in the

IIID operating environment are formed by selecting the first trace

section from each program trace. As can be seen write through performs

significantly better than write back for all cache capacities. This

graph also shows that space-sharing is better than fixed space

allocation. Although it seems that a mixed program workload is more

suitable for shared cache than the workload with all streams having

similar program characteristics, it is too early to reach a firm

conclusion because the interaction between program localities under

dynamic space sharing are still unclear.

Table 4.3.1 illustrates the effect on miss ratio of an increase in

the number of streams as the cache capacity is also increased

proportionally. The last column, trace section, in table 4.3.1 indicates

which trace section of each program trace is used. Hence, trace

sectional for np4 means the first trace section of each program trace is

used, 2 means the second trace section of each program trace is used.

For sp=8 and trace section=l, the first trace section of each program

trace is used to form four distinct streams. However, the other four

streams are also formed by the same four trace sections but with distinct

offset constants to create disjoint spaces. Both the first and second

trace sections of each program trace are used to form distinct streams

for spsS and trace 3*otionzk1,2). Note that the IIID operating

[I!
' -i ,,, ,-. I i II I II I II II I I

176

.14

Shared

------ Private
. 12

A: IIID, WB

B: HID, WT

Block size - 8.1 Set size 8

%

I %

.08

%%4

Cu .02 4

.04

.00 I I !
512 1024 2048 4096

Cache Capacity

Figure 4.3.3 Miss ratio comparisons between shared
cache and private cache for workload of mixed
program traces.

I

177

Table 4.3.1

The effect of simultaneous increasing both
cache capacity and number of streams on
miss ratio.

Set Cache Shared/ Trace

p s Size Capacity Private (I - h) Section

1 4 8 1024 shared .043 1

1 4 16 1024 shared .041 1

1 4 8 2048 shared .015 1

1 4 16 2048 shared .013 1

1 4 8 1024 shared .089 2

1 4 16 1024 shared .088 2

1 4 8 2048 shared .043 2

1 4 16 2048 shared .042 2

1 4 8 1024 -ivate .072 1

1 4 16 1024 private .074 1

1 I 4 8 2048 private .030 1

1 4 16 2048 private .030 1

1 8 8 2048 shared .046 1

1 8 16 2048 shared .039 1

1 8 8 4096 shared .016 1

1 8 16 4096 shared .013 1

1 8 8 2048 shared .067 (1.2)

1 8 16 2048 shared .065 (1.2)

1 8 8 4096 shared .027 (1.2)

1 8 16 4096 shared .026 (1.2

1 8 8 2048 private .085

1 8 8 4096 private .038

1.

178

environment is considered for all experiments in table 4.3.1. Also,

write through is used for shared cache and write back is used for private

cache.

Although shared cache always performs better than private cache, a

simultaneous increase in both cache capacity and number of streams above

four for shared cache does not improve miss ratio any further. For

example, the average value of miss ratios for four streams obtained from

row 1 and row 5 is 0.066, but the corresponding miss ratio for eight

streams, row 17, is 0.067. Note that shared cache may perform better

than private cache because space-sharing can yield some benefit if some

processes need large spaces while other processes need small spaces.

However, the space occupied by a process is a function of time. No

performance improvement or even worse performance may result if a large

space is simultaneously desired by several processes.

The space allocated to a process according to its program locality

cannot be easily measured in our simulations. However, an indirect

measurement, such as the changes in hit ratio over time, may be used to

infer the changes of space desired. From an increase of hit ratio during

the interval (t,t+ At) we may infer that fewer blocks of space are

required in this interval. Similary, if hit ratio decreases we may infer

that more blocks are required. Since a high hit ratio may imply either

the process occupies a small number of blocks because it is in a small

tight loop or the process occupies a large number of blocks and most

required information is already in the cache, the blocks of space

allocated to a process cannot be inferred from its hit ratio. However

9-

i
179

the changes of hit ratio for a process may show the block space needed by

this process. If the hit ratio increases for a process while the hit

ratio decreases for another in the same time period, space-sharing may

result in some benefit during that time period. Since the modified LRU

replacement algorithm in each set takes advantage of program locality,

the block replaced by some process should be unlikely to be referenced in

the near future by its original owner process.

Figure 4.3.4(a) shows the hit ratio vs. time for a private cache of

256 words. Separate experiments have been carried out for the first

trace section of both EIGEN and GAUSS. In figure 4.3.4(b), the solid

line curve illustrates the hit .atio obtained by using the same two trace

sections for a shared cache of 512 words and the dotted line curve shows

the average value of the two hit ratios shown in figure 4.3.4(a). Note

that time is measured by the number of references. For private cache,

the observation period is 100 references and the hit ratio at each

observation point is the fraction of requests resulting in hits within

previous 400 references. However, for shared cache, the observation

period and the average period are double. Since shared cache executes

interleaved instructions from two streams, the time moment t in figure

4.3.4(a) corresponds to the time moment 2t in figure 4.3.4(b). In order

to highlight the effect of space-sharing on hit ratio, we use write back,

fixed block size (=8), and fixed set size (=4) for both shared cache and

private cache.

As shown in figure 4.3.4(b), shared cache performs better than the

average of two private caches during the periods A, C, and D. During

Ao-A124 387 SHAREDSCACHE ORGANIZATION FOR MULTIPLE-STREAM COMPUTER 318
SSEM (U) I NO S'UN IV AT URBANA COORDINATE SCIENAR H ACE 0 N03 0 05

LAB C YEH JAN 81 R-904 NOOO39-80-C- O556UNCLASSIFIED F/G 9/2 NILmhmhhhhhimmmlm
Ehmmhhhhhhmmhlm
IIIIIIIIIIIIII
EIIIIIIIIIIIII
IIIIIIIIIIIIII
IIIIIIIIIIIhI

L36
a Ig

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

180

an
C.'
I-

(

* I
$4

* 0
0 4.4

N 0 4'
* 0 u

- 41

it U
41.1.

* I -~ 4194
* 14

0
'-4

4.. 0 .-.

'4.4
* . 41(r-. 41
'S. U 41

41 9.4
$4 41
41 ~1

'4.4
41 0

41
-~ 4 4.4 5* -I. 0

- I 0 14
(5... * 41an *0

~ tj~ I
rzl U~
0 ~ a

* I'-4 4 9.4

41 41

4 I N $4
41

I ,~
4'

~~'*0
5-

5.

/
-~

qral
'4

o
0

0

14 '0pW~j ~H

[181

1.M

I Cc
VII
0

0 "

0
00 -P4

.0 >

* -U3

q~~ 002u T

182

period B, shared cache performs slightly worse than the average of two

private caches. In figure 4.3.4(a), it is seen that during most of

periods A, C and D one hit ratio goes through a peak while the other hit

ratio goes through a valley, i.e. positive slopes tend to match negative

slopes. During most of period B in figure 4.3.4(a), both hit ratios go

down. Since both streams require more blocks of space during period B, a

worse hit ratio for shared cache may occur if one block replaced by some

process is referenced soon by its original owner process. Note that the

shared cache gives almost the average hit ratio during the first few

thousand references. This coincidence occurs since the cache is empty

initially. During the initial period, the high miss ratio is primarily

caused by filling the cache, instead of by space contention, and the

space-sharing has less effect on performance. In this example, the

stationary miss ratio averaged over 25 thousand references for shared

cache is 0.044 which gives a 13.1% improvement over private cache (miss

ratio=0.051).

Similar experiments have been done for the first and second trace

sections of EIGEN. The hit ratios vs. time are shown in figures

4.3.5(a) and 4.3.5(b). As can be seen in figure 4.3.5(b), shared cache

performs worse than private cache during the periods A, C, and E in which

figure 4.3.5(a) shows that both hit ratios go through peaks. Figure

4.3.5(b) also shows that shared cache is slightly better than private

cache in periods B and D in which figure 4.3.5(a) shows that one hit

ratio goes through a peak while the other hit ratio goes through a

valley. During period F, one hit ratio diagram goes down while the other

183

I.4

LM 44

(D 40
44 000

0 -40 1
NU

00u
ca) W $4

S ~ cct I.140

"- -H.0

~5 ~to
0 C.

" I4

IOT.ZR 3T

184

cn0

to.

0

0 4
'S 0

0 .1.8

C.4 0a

a 00

4)4

O'ul 4)F

185

keeps almost constant as seen in figure 4.3.5(a). An almost average

value is seen in figure 4.3.5(b) for shared cache during the same period.

The stationary miss ratio averaged over 25 thousand references for shared

cache is 0.063 which is 13.2% worse than the private cache (miss

ratio=0.056).

Figure 4.3.6(a) and 4.3.6(b) show experiments using the first trace

section of both EIGEN and CCOBOL. The shared cache results in almost the

same hit ratio as private cache. This coincidence occurs since the

CCOBOL program results in large variations in hit ratio during relatively

short periods of time as shown in figure 4.3.6(a). Many large variations

in hit ratio within short time periods may be considered as rapid and

frequent changes in program working sets. In this case, the blocks of

space allocated to the process change their content rapidly and

frequently. Then the effect of space-sharing on hit ratio is less

significant since the hit ratio may be dominated by the changes in

program working sets. The stationary miss ratio averaged over 25

thousand references for shared cache is 0.113 which is 4.6% worse than

the private cache (miss ratiox0.108). Although not shown here, the hit

ratio curve for ECOBOL has a similar shape to that for CCOBOL. This

program behavior of rapid and frequent changes in working sets for both

CCOBOL and ECOBOL may also explain the reason that shared cache sometimes

performs worse than private cache for an IIID operating environment with

all streams having CCOBOL or ECOBOL program characteristics as shown in

figures 4.3.1 and 4.3.2.

In summary, our experiments show that shared cache may perform

jL___._

186

S Cz

4. 04

004

-4)

4

44
4

a~
Sca.

41

U0

- 41

.0
U3 cc

o*;2vx LI;

7F-

j 187

4-*

0

v4
C44

0

$.4

)a ca .

40

-. * 0
41 A

'- z
0

0 41

41

cc1 .0

4) "1

188

better than private cache if a workload of mixed programs instead of a

workload of all programs having similar characteristics is used.

However, space-sharing may not yield any benefit if the mixed program

workload contains some streams with the program behavior of rapid and

frequent changes in working sets. Experiments also show that shared

cache may be better than private cache if a small space need matches a

large space need most of the time. No miss ratio improvement or even

worse miss ratio may result for shared cache if large space needs happen

frequently at the same time for several streams. For shared cache, write

through policy always performs better than write back policy. In most

cases, shared cache with write through results in a smaller miss ratio

than that of private cache with write back.

The above observations are based on the results of our experiments.

It was shown that shared cache might perform worse than private cache in

some cases since the LRU replacement algorithm in each set could not make

an advantage out of space contention. In order to derive an effective

shared-cache management policy, more research on dynamic space sharing is

necessary.

4.4 Validation of the Models

The effects of various parameters on the miss ratio have been

discussed in the previous two sections. In order to isolate the effects

of cache access conflict on the miss ratio, the cache cycle, c, and the

block transfer time, T, were set to zero and the number of processors, p,

!L

f189
was set to one in previous experiments. In this section, the analytical

models for both shared cache and private cache will be verified by

comparing the analytical predictions with the simulation results. Due to

the simulation costs, it is impractical to verify every possible

combination of all parameters for each model. Only several cases for

each model will be verified.

For a given hit ratio, the analytical models developed in chapter 3

predict system performance by evaluating cache access conflict. To

verify the analytical models, the hit ratio should be treated as a given

parameter and only the effects of cache access conflict on performance

need to be verified. Hence, the cases chosen to verify the models in

this section are the extreme cases of high and low cache access conflict.

In figure 4.2.2, a shared cache memory of 1 K cache capacity and block

size = set size a 8 results in a miss ratio of 0.043 for four streams.

This miss ratio is measured under no cache access conflict. Simulation

experiments are repeated for this cache organization to simulate the

system of a single pipelined processor with four segments, i.e. p:1 and

sz4, under various access conflict situations. A shared cache memory of

2 K cache capacity and block size : set size = 8 results in a miss ratio

of 0.067 for eight streams under no cache access conflict, shown in table

4-.3.1, is chosen to study the effect of multiple access line collisions

on the analytical predictions. This particular cache organization is

used to simulate the system of a parallel-pipelined processor of order

, (2,4). Since the simulation termination time is proportional to the

total number of streams in the simulated system, a small number of

[segments, i.e., 2, is used in some cases to reduce the simulation costs.

_

190

In our analytic models, it was assumed that cache bit ratio is

independent of cache access conflict and cache memory referencej are

independent and uniformly distributed. These assumptions are verified

below by comparing the analytic predictions with simulation measurements.

Let the miss ratios measured under no cache access conflict be denoted as

(1-h') and the miss ratios measured under various cache access conflicts

be denoted as (1-h). Let (1-hd) be the dynamic miss ratio derived from

(1-h). Let D1 represent the ratio of (1-h) to (1-h*) and D2 represent

the relative performance, CPU utilization, of analytical prediction with

respect to simulation measurement. Note that the difference between

(1-h*) and (1-h) shows the deviation of program static miss ratio caused

by cache access conflicts. However, (1-h d) is the dynamic miss ratio for

.the given program static miss ratio (l-h). The CPU utilization predicted

by an analytical model is obtained by plugging (1-h) into the analytic

equations for model A. However, for model B, the dyramic miss ratio,

(1-hd), is used to evaluate PAh and PAr and then performance is obtained

by using (1-h), PA and P~ in the equation for Cu given by theorem

3.3.2.1.

Table 4.4.1 and table 4.4.2 illustrate both the analytical

predictions and the simulation measurements for model A (implicit lookup

table) and model B (explicit lookup table), respectively. These tables

show that the percentages of deviation of miss ratios due to the cache

access conflicts vary from 0.0% to 11.9%. Larger deviations occur at

longer block transfer times. In general, (1-h) is less than its

corresponding (1-h) since reference patterns may be altered due to cache

I _

191

-4'0 4 Ui F P4 l r- U 4 0.4 C4

m% N0n% 0 000 ' 0 It 0 0

3 s00 00 1, n 00 ~ 0% cn LM

N 0 0 N '.0 -t C-4 M.

wf r-. in c r- 1 % '0 r. %.0 cn N' %D %t

..4 % .' . '. 0 . 1. . .~ . 4 . .%

00 o r- r-r-0 4 0 0 0 0 '.
".4 -~0 0 r- 0 r~- m Ln m~ (-4T4T0%

m m 00m0% 0 0% 0% m% as ON % w

0 1-4 11 -

E4 0 r.~c)eJ%~J 0 4 A C

- w

Gi 0~ N 4 4 4 4 4'W . 0 s
-4 U4 0, 0O 9~00 0 000

r.4 04 4 4

LI.411.4.,. m0- 4 4 4 4 4

NI NI .%04

-- - 4

-q r-4 - -4 C'J -4I - -4 .

192

N r0 -4 0c w C-4 UN 4 4 N
N %0% 00 o&A00OOO0 %

It -0 - - 00 14 - - -

".4 4t M
4 0 W tn ON 0% U m C-4 O

Ci2 tl- g 0% r. r- %O I kc N J% xn

.0 0 . 0 r. . . . 0 . . .-

P 0 t- cn r 4%m UUM t - in U, w
000 0% c% 0% <% 0% a% % cy% 0

44

U4

G 44 u

cc 0 0

44 4 M1

1 4

0 ~ . 4 4 4 4 44) -M' 0 C3 D 0

1 '-4 '4 -.0 -.0 -4 4 '.4 ' 4 N C1

z- -- r C4 C4~

-44 -44.

E- 0 0 co 0 ao 0 co 0 co 0 ao 0

0 -4 .4 (-I 4 N 4 N 0 - ' - 4

-.- . 4 C-4 C-4 C14 -N 4 -4 4

no M9

193

access conflicts. A miss request under no cache access conflict may

become a hit request under cache access conflicts. For example, assume

that a reference sequence contains some miss requests followed by a

particular request k under no cache access conflict. Assume also that

they all reference the same set. Furthermore, assume that request k

results in a miss under no cache access conflict because the block

referenced by request k is replaced by its former miss requests. Due to

the changes of reference patterns under cache access conflicts, request k

may be accepted prior to those miss requests by the referenced set (or

module) and result in a hit. Hence miss ratio may be reduced under cache

acess conflicts. Although the relative deviation of miss ratios can be

as high as 11.9%, the relative amount of deviation is small. The high

values of the percentage indication are due to the small value of

(1-h). As can be seen, the percentage of deviation of the hit ratios,

rather than iss ratios, for all cases in both tables is less than 1%.

The cache access conflicts do affect the cache hit ratios. However, the

amount of deviation of the hit ratios due to the cache access conflicts

is small. Therefore, the assumption that hit ratio is independent of

access conflict should not introduce a significant deviation in the

analytic predictions.

The last column in both tables shows the performance of analytical

predictions with respect to simulation measurements. The magnitude of

D2 varies from 1.002 to 1.216. In general, the simulation Ahows lower

performance than the corresponding analytic results for I > 1. In

addition, as Cu decreases, the performance difference between the

1.

[i

194

simulation and analytical results becomes more apparent. In the

simulation experiments, the blocked requests are resubmitted with the

same addresses one instruction cycle later. Hence the address

distribution is not uniform and there is a tendency to reference lines

and modules that cause rejections more frequently without success.

Therefore, the probability of rejection is higher for the simulation

experiments. However, the percentage of performance difference is less

than 5.2% if the CPU utilization is higher than 0.77. Therefore, the

assumptions that rejected requests are discarded and references are

uniformly distributed do not cause a significant deviation of the

analytic model from reality for systems with a reasonable performance.

Note also that the percentage of performance improvement of model B over

model A is less than 5.5% in all the cases listed in both tables.

A simulator for p processors and N main memory modules system with p

private cache memories was written by Patel (631. A random number

generator is used to generate both cache and main memory requests. A

main memory request is generated immediately after a cache miss has been

detected. A blocked main memory request due to access conflict is queued

in the buffer, instead of discarded. A buffer is associated with each

main memory module. Each instruction cycle an outstanding main memory

request is chosen from each nonempty buffer. Assume that there is a

cache controller associated with each private cache. After a main memory

request is made by a cache controller, this cache controller will not

make any new request until the previous request has been served. Table

4.4.3 shows the analytic and experimental results. Note that T"

195

Table 4.4.3

Performance for private cache systems (2 = N)

p T' 1-h Cu(Sim) Cu(AraI.) D

2 2 .500 .472 .454 1.040

2 2 .250 .647 .640 1.011

2 2 .125 .790 .789 1.001

2 2 .063 .885 .884 1.001

2 2 .031 .938 .941 .997

2 2 .016 .969 .969 1.000

2 8 .500 .162 .172 .942

2 8 .250 .294 .301 .977

2 8 .125 .467 .477 .979

2 8 .063 .658 .653 1.008

2 8 .031 .804 .797 1.009

2 8 .016 .891 .885 1.007

8 2 .500 .436 .446 .978

8 2 .250 .628 .635 .989

8 2 .125 .785 .787 .998

8 2 .063 .885 .884 1.001

8 2 .031 .939 .940 .999

8 2 .016 .969 .969 1.000

* 8 8 .500 .142 .170 .835

8 8 .250 .260 .301 .864

* 8 8 .125 .429 .476 .901

8 8 .063 .623 .653 .954

8 8 .031 .785 .797 .985

8 8 .016 .884 .885 .999

196

represents the block transfer time relative to the instruction cycle and

D represents the relative performance of analytic prediction with respect

to simulation results. The large performance differences between

analytic predictions and simulation measurements occur at very low values

of performance. In table 4.-.3, this performance difference is less than

1% for systems with CPU utilization higher than 0.8. Therefore, the

deviation of analytical predictions from the simulation results is

negligible for reasonably high performance systems.

The effects of cache access conflicts on system performance for a

given hit ratio will be studied with various parameters in the following

five sections. In order to highlight the effects of cache access

conflicts on performance, the effect of cache hit ratio on performance

should be isolated. This can be done by choosing a high value' of hit

ratio. In the following discussion, a hit ratio of 0.98 is chosen for

studying the performance degradation due to cache access conflicts. A

given hit ratio may be obtained by choosing different combinations of

cache capacities, block sizes, and set sizes. However, the effects of

these parameters on hit ratio have already been discussed in the previous

sections. Hence, it is simply assumed that a fixed hit ratio of 0.98 is

given without explicitly specifying the cache capacity, the block size

and the set size in the following five sections.

In this section, we have shown that the simulation results were not

significantly different from the analytic predictions for reasonably high

performance systems. Since we are interested in high performance

systems, the following discussions are based only on the analytic

197

predictions. Also, since the analytic results for model A and model B

are almost the same for the range of parameters to be studied, only the

analytic results for model A are discussed in the remainder of this

chapter.

4.5 Effect of the Number of Cache Modules (N) on Performance

Various cache memory configurations, i.e. (1,m), can be obtained

for a given cache capacity. By varying the size of the cache memory

module for a given cache capacity, the total number of cache memory

modules, N, can be varied. In order to keep hit ratio constant, we

assume that the cache capacity is constant for a given p and h. For

practical reasons, the total number of cache memory modules cannot be

arbitrarily large for a given cache capacity because of the availability

of only certain memory chip sizes. However, as the effects of the number

of cache modules on the performance are studied, the practical limitation

on the memory module sizes is not considered here.

Figures 4.5.1 and 4.5.2 illustrate the effect of N k A) on CPU

utilization for 1=4 and 16 respectively. In general, an increase in N

* increases the performance for given 1 , p, h, T, and c (> 1). For c=1,

-- the number of cache modules, N, has no effect on performance because

there is no busy module collision. Recall that the lower bound on P of

corollary 3.2.3.1.2 is

Ii

198

1.0
- - 1l6 h .98

.9 T = 32

.8c

.7

.6.

.55

V4

-' .3

.2 CO p =16
c.

.0 1 1 - t II
1 4 8 16 32 64 1.28 256 512 1024

Total Number of Cache Memory Modules, N

Figure 4.5.1 Effect of N on Cu. for t 4.

199

1.0
T - 16

T -32 c 1
.9 h -. 98

-16 C i

.6

.6

-P4 .4 - - -- ---

14

S.3

.2

.0

1 4 8 16 32 64 128 256 512 1024

Total Number of Cache Memory Modules, N

Figure 4.5.2 Effect of N on Cu for 1 16.

200

AN(1-P 1)

AN + Np(l-P1)(1-h)(T+c-l) + Aph(l-P I) (c-i)

(1-P 1)

i +Z (1-P) (1-h) (T4-l) + NEh (1-P 1)(c-)

where 1-P 1 - [l-(-)P] A
P

As N approaches infinity and h is high, the lower bound becomes,

Aim " ('-P1)/[1 +2 (1-P1)(l-h)(T-c-1)]
N ,,, co P

From the above limiting expression, it is seen that for large N and

h, the cache memory cycle, c, does not have a significant effect on

PA or Cu. Hence, for large N and h, Cu is limited by A , p, and T. The

graphs also show that the block transfer time, T, highly affects Cu.

This effect becomes larger for c 1 as N increases. As an illustration,

consider figure 4.5.1, which is for A =4. Suppose that p=1 and Cu is

required to be 0.75. Using (c,T)-(3,32), N is required to be at least

256, whereas, if (c,T)s(3,16), N may be as low as 16. In either case, N

is significantly larger than pc.

If the block transfer time, T, is primarily deminated by the main

memory cycle, i.e. the only way to reduce T is faster main memory,

another tradeoff between o and T for each p can be found in the graphs.

b

201

A system with slow main memory and fast cache memory may perform better

than a system with fast main memory and slow cache memory. For example,

consider figure 4.5.2, for which 1 =16. Suppose that p=16 and cache

memory can at most be divided into 64 modules due to practical

restrictions on the module size for a given cache capacity. Then the

performance obtained by using (cT)=(1,32) is higher than that obtained

by using (c,T):(3,16). In addition, the cost of a system using

(c,T)=(1,32) may be cheaper than the cost of a system using (c,T)=(3,16).

Since the size of the main memory is usually much larger than the size of

the cache memory, speeding up the main memory may then be much more

expensive than speeding up the cache memory. However, the reverse

tradeoff will be true for this example if N=128 is allowed.

Figures 4.5.1 and 4.5.2 show that there is progressively less payoff

(increase in Cu) from increasing N for large A and small p, and for

small t and large p. On the other hand, there is some significant

payoff to increasing N as A is close to p in both models.

4.6 Effect of the Number of Lines (I) on Performance

Intuitively, an increase in I r1educes multiple access line

collisions and busy line collisions and therefore increases performance.

Figures 4.6.1 and 4.6.2 illustrate the effect of the number of lines on

performance for N=64 and cz3 and for Nz1024 and o=1,respectively. The

graphs show that poor and undesirable performance occurs in the region

j p. For t <<p, the performance is extremely low because of the

Ii

202

1.0

N .5

.7.

.5.

.4

.0
1 2 4 8 16 32 64

Number of Lines, Z

Figure 4.6.1 Effect of t on Cu for N -64 and c 3.

203

1.0

.9

0

Av- T - 16
N .5

------ T - 32

.4 #4h - .98
J# N - 1024

1 2 4 8 16 32 64 128 256 512 1024

Niuber of Lines, I

Figure 4.6.2 Effect of A on Cu for N -1024 and c 1.

204

excessive multiple access line collisions. Hence in this region there is

very little payoff in performance to doubling I

There is a point of inflection at I :p. In general, for I in the

neighborhood of p, Cu is most sensitive to increases in A and a

significant increase in Cu occurs for small increases in I . In the

region of A >>p, multiple access line collision probability P1 is close

to 0 and therefore probability of acceptance PA is close to 1. Hence the

performance is limited only by (1-h)T", where T"=rT/s/is the block

transfer time in number of processor cycles. There is little payoff in

performance to increasing I for small (1-h)T" because the performance is

almost saturated. In this case, the asymptote is 1
Cu =

1 + (1-h)T"

4.7 Effect of Cycle Characteristics on Performance

An increase in the block transfer time, T, increases the busy line

collisions and the waiting time for cache misses, whereas, an increase in

the cache memory cycle, c, increases busy module collisions. However,

these effects are very small when I and N are sufficiently large.

In general, the block transfer time may be a function of the cache

cycle time. An increase in c may result in a larger T. However, the

block transfer time is also a function of block size, number of modules

per line, main memory cycle and main memory bandwidth. Hence, fixed T

can be obtained by adjusting these other parameters when c varies. In

" this section, the effects of c and T on performance will first be

discussed separately by varying each one while holding the other

constant. Then, the combined effect of a simultaneous increase in c and

T is illustrated. It should be noted that c cannot be arbitrarily large,

since the model requires the degree of pipelining, s, to be larger than

0.

The effect of T can be explained somewhat analytically by using the

lower bound formula, i.e. corollary 3.2.3.1.2,

(1-P)

Aa +a (1-h) (1-P)(Tc- 1) + ph(I-P 1)(c-1)
AN

In order to highlight the effect of T on performance, it is assumed that

i « N and c T. Note that T has two effects on performance, namely,

miss penalty and busy line collision. For small L such that A < p,

PA s Al/p for high h. The performance degradation in this region is

primarily due to the excessive multiple access line collisions. Hence

the performance, Cu, is very sensitive to the variations in 1 but

insensitive to the variations in T for A < p. As A increases to p,

" A (1-PF) / [1 + (1-P1)(1-h)T] and therefore the CPU utilization Cu =

1/[1/PA + (1-h)T") can be approximated as Cuul / [1/Cl-P1) + (1-h)(1 +

1/s)T] for large N. The performance is very sensitive to the variations

I. in both T and A for A near p. In other words, system performance is

critically dependent on the effects of miss penalty, busy line collision,

1.

206

and multiple access line collision for I i p and large N. For t >> p,

PA A 1 and Cu mI / [1 + (1-h) T/s] for high h. The performance is then

insensitive to L but sensitive to miss penalty, (1-h)T". In this

region, the effect of access conflict on performance is insignificant and

the performance is almost entirely dependent on miss penalty. Hence, the

block transfer time, T, affects the performance significantly for Z z p.

Figure 4.7.1 illustrates the effects discussed above. Note that an

increase in c shifts the curves down.

Figure 4.7.2 shows the effects of cache memory cycle, c, on

performance. It was shown in section 4.5 that performance is less

sensitive to c for large N. The sensitivity for N=64 is illustrated in

figure 4.7.2. Figure 4.7.3 illustrates the combined effect of a

simultaneous increase in c and T for T/c=8.

In general, if N is large enough, variations in c have little effect

on Cu for any configuration. If A is large or I is close to p,

variations in T have a significant effect on Cu.

4.8 Effect of the Number of Processors j) on Performance

The choice of p is very critical to obtaining reasonable

performance. The sensitivity of PA to p can be evaluated for some class

of p as below by employing the lower bound formula, i.e., corollary

3.2.3.1.2, for PA' For p>>1 , (1-1/)P : and (1-P 1) % /p. Hence, the

lower bound formula is approximated as I/ p[P + (1-h)(T+c-1)], for

207

1.0

h .9

.764

.6 1
0

.4

.3

.2

.3

8 16 24 32 40 48 56 64 72

Block Transfer Time, T

LFigure 4.7.1 The effect of T on Cu for N -256 and c 1.

208

1.0
h -. 98

.9 p 4

.8
4

.7

* .6
0

.3.

.2'

.1.

'-4

(11) 216 3,6

Cyl haatritc, cT

.4 ue472 Teefeto nC frN 6 n 6

209

.9m
6

.8

.7

0 .6

.51

S .4

.3

.2

.0 L

(1.8) (2,16) (3,24)

Cycle Characteristics, (c,T)

Figure 4 .7.3 Effect of (c,T) on Cu for T/cm8 and N-256.

210

large N. Furthermore, if h is high and T is small, then the lower bound

formula is approximately reduced to A/p. Hence, both PA and Cu are

small in this region. Asymptotically, both PA and Cu decrease to zero if

p increases without limit. However, for p <<I, (1-1/A)P 1-p/I and

(1-PI) % 1. Therefore, in this region, the lower bound formula for

PA becomes approximately IN / iN + pN(1-h)(T+c-1) + p th(c-l)]. For

large N and h and small T, PA is close to 1. An increase in p does not

affect PA and Cu significantly as long as p << A, h is high and T is

small.

Figure 4.8.1 illustrates the effects discussed above. Note that Cu

is most sensitive to p for p in the neighborhood of A. Some tradeoff

between A and T for certain p can be found in figure 4.8.1 For

example, given p=8, a system with £ =256 and (c,T)=(1,32) results in an

almost the same performance as that of a system with 4 =64 and

(c,T)=(1,16). Then the tradeoff between A and T can be determined by

the costs of different-sized crossbar switches and different-speed

memories.

The total system throughput per instruction cycle, pCu, may be a

usuful performance indicator to understand the effects of p on entire

system performance. Figure 4.8.2 illustrates this effect for cal. For p

<<t' PA is close to 1 and an increase in p increases the system

throughput almost linearly. However, for p >>A , the curves become flat

and no significant further throughput improvement can be achieved by

increasing p.

211

- - 1i6 h -. 98
1.0 T -.... 32 N -256

.8

.4

.2

.0

1 2 4 8 16 32 64

Number of Processors, p

Figure 4.8.1 Effect of p on Cu for N-256 and c-1.

[b-I

212

20 - -T16 '
T -32 ;~

h - .98 I

N - 256 /~

10

000

1000

001

1 2 4 8 16 32 64

Number of Processors, p

Figure 4.8.2 Effect of p on pc for N-n256 and c-i.

213

Although not shown here, an increase in a shifts the curves down.

An increase in N shifts the curves up because decreasing c and increasing

N result in a similar effect on performance. Note that the total system

throughput is monotonically nondecreauing as p increases.

In summary, PA is close to 1 and neither PA nor Cu are very

sensitive to small variations in p for p <<L. Hence, the total system

throughput increases almost linearly with p. As p increases to 1,

PA becomes very sensitive to variations in p and there is a point of

inflection in both the Cu and pCu curves in this region. Once p > I,

both PA and Cu decay asymptotically to zero as p increases further. In

this region, the total system throughput curves flatten.

4.9 Effect of Processor Speed on Performance

In the analytic models and simulation experiments, the segment time

unit, T , was not explicitly considered. In this section, the effects of

processor speed on performance are discussed for three different cases.

Recall that the cycle characteristics, (c,T), used throughout this thesis

are measured relative to T . Let (CTo) denote the absolute cycle

characteristics, then c a FcO/Tj and T - [TO/k]

Since decreasing r also increases the rate of requests to the cache

1. memory, Cu is not an appropriate performance indicator of the effect of

T. Instead, the absolute throughput, pCu/? , is adopted as a measure of

performance in this section. Note that the delays due to bussing and

Ii

214

crossbar switching were assumed to be transparent in all models. In this

section, it is assumed that these delays are so small that they are still

transparent within the range of processor speed to be studied. Since

there is no exact solution for PA in the general case, the lower bound

for model A is used in the following discussion.

For the case of a constant request rate assumption, the number of

processes which request cache memory within one cache memory cycle is

fixed at Io as T varies. Then I0 % pc. Therefore, doubling the speed

of processor (halving T) doubles c and requires that p be halved in

order to keep 10 constant. Figure 4.9.1 illustrates the example I0=4,

h=0.98, (co,To) = (200,1600)ns, N=256, and p goes from 1 to 4 as T goes

from 50 to 200 ns. Observe that an increase in the speed of the

processor (decrease in T), increases the throughput for configurations

with small A. The increase in the throughput for small A is primary

due to the effect of fewer multiple access line collisions while reducing

p simultaneously as the speed is increased (T is decreased). Note that

lines must be faster (as T decreases) since address hold time, a, still

equals one. For large values of A , an increase in the processor speed,

reduces the throughput slightly. Although a reduction in p reduces the

multiple access line collisions, the busy line collisions 6nd busy module

oollisions are increased due to the effect of increasing (c,T)

simultaneously as the speed is increased. Therefore, the reduction in

throughput for large t as T decreases is due to a combination of the

contrary effects of reducing p while increasing (c,T) simultaneously as

the speed is increased. The multiple access line collision is negligible

215

20
A = 256

18 26

- 2 16

S 16

14

12 - =4

10 10

* 8

.~ 6

h=-.98
4 -N -256

10 = pc= 4

2 -C 0 ,T 0) (200,1600) na
pm 1 2 4
c=4 2 1

0
50 100 200

Segment Time Unit, ~

Figure 4.9.1 Effect of processor speed on performance
for a constant request rate.

216

for j >>p, but more busy line collisions and busy module collisions occur

for a decrease in p (for constant request rate). Hence the throughput is

decreased as p decreases (7 decreases) for I >>p. For the constant

I0 assumption, doubling T halves s. Hence sp is constant as T changes.

Obviously, a change in T corresponds to physical changes in the

processor design.

Consider the second case in which 10 is not fixed. Assume that N,

p, and (co,To) are fixed but T varies. Note that 3 will still vary

inversely with T and therefore some processor changes are required. In

this case, an increase in processor speed increases the degree of

pipelining, s, and the rate of requesting cache memory. Figure 4.9 .2

illustrates the example for N=256, p:4, h=0.98 and (co,To)z(200,1600)ns.

In general, an increase in the processor speed increases the throughput.

Note that an increase in processor speed increases the cache memory

bandwidth because the cache request rate is increased. However, this

bandwidth increase is faster for larger I because of fewer multiple

access line collisions. Hence throughput improvement is relatively

higher for larger 1, as the processor speed increases.

In the third case, it is assumed that I0, N, s, p, c and T are all

fixed. Decreasing T then simply corresponds to faster clocking of the

processor. Furthermore, decreasing T requires a proportional decrease

in (CoTo) so that (c,T) is fixed. For example, let N=256, p=4, h=0.98

and (cT)u(1,8). Cu is a constant for a given memory configuration as

processor and memory speeds change. Figure 4.9.3 shows the effect of

processor and memory speed on the throughput for various memory

217

70h -. 98

p -4
N =256

60 (COST 0) (200,1600)

5~ 0

40

0

4 Jw 50
0

0

5010 200 -6

Segment Time Unit,T (nseC)

Figure Ia.9.2 Effect of processor speed on throughout[f or varying request rate.

218

80

h =.98

p =4
N =256

70 (c,T) - (1,8)

2 60

40 -

'-4 2

- 6

~ 40

00

20

501000

Segment Time Unit, T

Figure 4.9.3 Effect of processor and memories speed
on throughout.

II

219

* configurations. In all configurations, an increase in processor speed

increases the throughput proportionally. In this case, a change in the

processor speed requires a similar change in memory speed for all levels

of memory hierarchy.

4.10 Effect of Miss Penalties on Performance

The effects of cache access conflicts on performance for various

parameters with a given hit ratio have been discussed in the previous

sections. We have also discussed the effect of access conflict due to

block transfer operation on system performance. In this section, the

effect of miss penalties on performance is discussed. To highlight the

effect of miss penalties on performance, the cache access conflict should

be reduced to a minimal level. Therefore, only the case of I >> p is

considered here. Note that the cache memory cycle, c, has an

insignificant effect on performance for both models in this region.

For Z >> p, (1-P) PA 1. Hence, Cuz1/[1+(1-h)T"J for both model

A and model B. The performance then depends on the product of (1-h) and

T" as shown in figure 4.10.1. As an illustration, consider the case of

(1-h)=0.1 and Tx32, which results in a performance of Cu=0.54. Note thatV
a constant T may be held as (l-h) varies by varying the cache capacities

Ii or the set sizes. Therefore doubling (1-h), in effect, requires T to be

halved in order to keep constant performance for I >> p. Figure 4.10.1

shows that Cuz0.7 for (1-h)=0.1 and Tx16 and for (1-h)=0.05 and T*32.

However, if T is primarily determined by main memory cycle, then halving

ii

220

1.0

p 4

.9 C i
£ N -256

.8

4j S .6

.3

.2 4

.1

.0 I I I I

.00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

Miss Ratio, (1-h)

Figure 4.10.1 Effect of (1-h) on Cu for IN-256.

I
221

T may generally cost more than halving (1-h) because the size of main

memory is usually much larger than that of cache memory.

Various (l-h) may also be obtained by varying the block sizes as

discussed in section 4.2. In general, the block transfer time, T, may be

expressed as a linear function of the block size. Let Mc and Bs

represent the main memory cycle and the block size respectively. The

block transfer time, T, can be expressed approximately as T=Mc + kBs,

where k is a constant which specifies the main memory bandwidth. As an

example of selecting the block size for a 1 K cache capacity, consider

figure 4.2.2, which shows miss ratios of 0.060, 0.045, 0.043, 0.049 and

0.058 for the block sizes of 2, 4, 8, 16 and 32 respectively. If M., k

and s are assumed to be 5, 1 and 4 respectively, then miss penalties,

(1-h)T", of 0.120, 0.135, 0.172, 0.294 and 0.580 result for block sizes

of 2, 4, 8, 16 and 32, respectively. Therefore, a smallest block size of

2, instead of the block size corresponding to the minimum value of miss

ratio, gives the highest performance in this case. Clearly, small block

sizes are preferred as the constant, k, increases. For large Mc and

small k, the effect of block size on performance is less significant if

(1-h) is also small.

For a given cost, optimal memory hierarchies may be obtained by

properly choosing (1-h) and T. Chow [641] studied the optimization of

storage hierarchies based on the assumptions that the miss ratio function

and the device technology cost function are representable by power

functions. However, our experiments show that the shared cache miss

ratio function, i.e., figure 4.2.1, cannot be fitted by a power function.

1.

222

Welch [65) did a similar study by only assuming the cost function to

be a power function. Welch's model is interesting here since as with our

model he allows the hit ratio to be specified arbitrarily. For our

two-level memory hierarchy, Welch's memory balance equation becomes

(1h)T" ~B
Tave S

where (1-h)T" is the cache miss penalty, Tave is the average access time

of system, S is the total cost of all memory levels and B is the cost of

main memory. Note that only one of the two parameters, h and T", can be

varied at a time. Therefore, for fixed h, the main memory should be

speeded up if the ratio of main memory cost to system cost is larger than

the ratio of main memory delay to system delay. Equivalently, the main

memory shoud be slowed down if the main memory results in a higher

proportion of system cost than its proportion of system delay.

Similarly, for fixed main memory speed, i.e. fixed T" in Welch's model,

more money should be invested in cache to enhance h if the main memory

results in a higher proportion of system cost than its proportion of

system delay. On the other hand, the hit ratio should be reduced if the

main memory absorbs a smaller proportion of system cost than its

proportion of system delay. Hence, Welch's .result may be helpful to

determine the tradeoffs between h and T if the main memory size is known

for our models.

However, his model does not consider the relationship between T" and

c. It is not necessary to invest money in main memory to speed up T", T"

can be reduced by spending money in cache to speed up c. Note also that

mI-

223

the hit ratio function is only a function of the cache capacity in his

model. However, various hit ratios may be obtained by varying the block

sizes and the set sizes for a given cache capacity.

Therefore, care must be taken in applying Welch's result directly to

our models. For a required level of performance, the tradeoffs between h

and T" are determined by the system cost. Once again, knowledge about

the cost variances for different cache capacities, main memory

capacities, device technologies, block sizes and set sizes are needed.

In summary, for I>> p, the performance is only sensitive to the

cache miss penalty, (1-h)T", for both model A and model B. However, the

tradeoffs between h and T" involve many cost functions. In this region,

the shared-cache system may perform better than the private-cache system

if shared cache results in a smaller miss ratio.

4.11 Load Through versus Nonload-Through

In general, there are three ways to handle a cache miss on read: (1)

load through, (2) nonload-through with processors resubmitting the same

request every cycle during the block transfer time, and (3)

nonload-through with processors not making any request during the block

transfer time. Nonload-through was assumed for both the analytic models

and simulation experiments discussed before. Also, the request rate was

assumed to be one for all models and experiments and blocked requests

were handled by resubmitting them as new requests in the analytical

1.
L

224

models (the same requests are resubmitted in the simultalon experiments)

one instruction cycle later until they are satisfied. Therefore, case 2

mentioned above has been simulated and modeled. The analytic models

developed in chapter 3 can easily be extended to case 3 by using lemma

3.4.1 and theorem 3.4.2 to modify the request rate. If the load through

capability is provided, processors do not have to resubmit a blocked

request due to cache miss since it is satisfied when the miss is

accepted. In this case, only those blocked requests caused by cache

access conflicts have to be resubmitted, therefore, the processor request

rate is less than one and the multiple access line collisions are

reduced. The miss penalty may also be reduced for load through because

the processor waiting time for obtaining miss data is usually less than

the block transfer time. In this section, the effects of load through on

performance will be discussed based on model A. This discussion can be

easily extended for model B with load through.

Let W denote the processor waiting time, measured in STUs, for

obtaining the miss data after a cache miss occurs. Usually, this waiting

time is approximately equal to the main memory cycle. By an argument

similar to that used in the proof of theorem 3.4.2, it is obvious that

each request will extend to /PA requests due to cache access conflicts

and each cache miss causes no request for rW/sI instruction cycles.

Therefore, the actual request rate seen by the shared cache for model A

with load through is given as

9-

h.

225

I/PA

1/PA + (1-h)r-

Assume that the block transfer time, T, is not affected by the load

through. Then, the probability of acceptance, PA' is evaluated as before

except that the probability of a request being rejected due to multiple

access line collision, P1 , is given by lemma 3.4.1, i.e. 1 - (1 - (1- /I

)P] t/a p. instead of theorem 3.2.1.1, i.e., 1 - [I - (1 - i/t)P]L/p.

Thus P1 can be expressed in terms of PA by substituting for the

expression given above. Using this PI in the equation for PA, we have an

equation in which PA is the only unknown. This equation can be

numerically solved using standard iterative techniques. A suitable

initial value for PA is obtained by setting Of =1. The performance, CPU

utilization is then obtained as

1

Cu 1+ (l-h\IW

A

Figure 4.11.1 illustrates the performance difference between load

through and nonload-through for a fixed processor waiting time, Wx4. In

this case, different values of T can be explained as the result due to

the variations in main memory bandwidth or block size if fixed W implies

a fixed main memory cycle. It can be seen that load through performs

significantly better than nonload-through, especially for small h and

large T. Figure 4.11.2 shows the performance variations for load through

I.

226

- Nonload-Through p = a 4
1.0 Load Through I-N -644

W 4
.901

.8-

.7

.6'

00

.5

.1I

.0

.50 .55 .60 .65 .70 .75 .80 .85 .90 .95 1.0

Hit Ratio, h

Figure 4.11.1 Performance comparison between load
through and nonload-through for a fixed W-4

227

a- - Nonload-Through

\ - Load Through with Constant W
.- " Load Through with Constant B.

I \B. \ -8

\~ ~ =~ .16
.6 \S 4\

I\ \ "- 20"
0

3I \-M~ .5.~

Q 42 16 2 4 2 2 0 6 4

.4---

h -. 98
ps 4

I- N -64
c k 1

.3

8 12 16 20 24 28 32 36 40

Block Transfer Time, T-W + kBs ;

Figure 4.11.2 Performance comparison between load
through and nonload-through for various W's
and Bs's.

[
I

228

due to various waiting times (W curves) for a given hit ratio, h=0.8.

Clearly, the larger the difference between W and T, the larger the

performance improvement from load through.

As stated in section 4.10, the block transfer time, T, can usually

be expressed as a linear combination of main memory cycle, M., and block

size, B., i.e. T=M c + kBs . Since the processor waiting time, W, for

cache miss is usually approximately Mc, variations in M. will cause both

T and W to change simultaneously. If W=M 0 and k=1, then the difference

between T and W is the block size. In this case, load through performs

significantly better than nonload through for large block sizes. The

B curves in figure 4.11.2 illustrate this effect. The B. curves are

constructed by selecting T=Bs W points on each W curve and connecting

points over all W curves with constant Bs .

In summary, load through performs significantly better than

nonload-through for small h and a large difference between W and T. Note

that load through reduces the waiting time required to obtain the data

which cause misses. In order to access the next data, the processor may

still have to wait until the block transfer operation is completed. This

situation is due to program localities which may cause the next data

accessed to be in the same block as the currently referenced data. Since

the addresses of the requests are assumed to be independent and random,

this effect has not been modeled. However, this effect is reduced when

the difference between W and T is small.

ii

I
229

4.12 Comparisons Between Shared Cache and Private CacheI
The performance differences for various parameters have been

discussed in the previous sections for shared-cache systems. In this

section, performance comparisons between shared cache (model A) and

private cache for several different organizations are discussed. The

possible overhead to handle the multicopy of data problem for private

cache is not considered here. In figure 4.2.2, miss ratios of 0.015 and

0.03 are shown for shared cache with write through and private cache with

write back respectively for a cache capacity of 2048, block size=8, set

size=8, and sp-4 . These miss ratios are used as given parameters to

Investigate the performance difference between shared cache (model A) and

private cache for various system organizations. Let (1-hs) and (1-h)

denote the miss ratios for shared cache and private cache, respectively.

Also let L denote either the number of lines in cache memory for shared

cache or the number of lines in main memory for private cache systems.

For the first case, system organizations of multiprocessors with

four nonpipelined processors, i.e., (s,p) a (1,4), for shared cache and

private cache are illustrated in figure 4.12.1(a) and figure 4.12.1(b),

respectively. The performance prediction for private cache can be

obtained by using theorems 3.4.1, 3.4.2, and 3.4.3. The analytic

equations to predict the performance for shared cache are given as

SA (l-P 1
IiA L + PT" (1-P 1)(1-h)

...

230

0 0

(b)

Figure 4.12.1 Multiprocessor systems with nonpipelined
processors for (a)shared cache and (b)
private cache.

I
231

! I ~CU ,,

i + (1-hs)TI

I where T" is the block transfer time relative to the processor cycle.

J Since processors make one cache memory request every instruction (or

processor) cycle and the cache cycle is assumed to be less than one

instruction cycle, the probability of acceptance, PA' given above is

obtained from Appendix A for c=1 and T is replaced by T". Figure 4.12.2

shows the performance comparison between shared cache and private cache

Jfor this case. Note that the solid line curves are the analytic results

for shared cache with various I and the dotted line curve is the

analytical result for private cache with 1 24. The topmost solid line

- curve is the absolute upper bound, i.e., for PA=x, performance for shared

cache. However, for private cache with A =4, the main memory access

interference is negligible, i.e. P Ael, in this example. Therefore, the

upper bound for shared cache is higher than that for private cache

1.. because (1-hs) is smaller than (1-hp). Although the performance of

shared cache is much worse than that of private cache for A =4, shared

cache may perform better than private cache, especially for large T, if a

sufficiently large Z is used for shared cache. For example, shared

cache with A =16 performs better than private cache with Z =4 for T" 8.

For the second case, a pipelined processor with four segments is

[. considered. Figures 4.12.3(a) and (b) show the system organizations for

shared cache and private cache, respectively. Note that for pz1, no

[

232

1.0Shared (1-h)s = .015

.9
PA1
ZL=64

4- 32

.8 = 16
a
0

.61

4.4

.7

2 3 4 5 6 7 8

Block Transfer Time, T" (Processor Cycles)

F~gure 4.12.2 Performance comparison between shared cache
and private cache for nonpipelined multiprocessor
systems.

1. 233

* 0 0

* b

Fiur 4.23 Snl 0eie rcso ytm o

a)9hrdccead(b piaecce

234

crossbar is needed for shared cache systems. For private cache systems,

there are four cache modules, each associated with one process, connected

through a time-multiplexed bus to the processor and there is a crossbar

switch between the cache modules and the main memory modules. For shared

cache, the analytic equations used to predict performance can be obtained

by combining theorem 4.3.3 and a proper equation in Appendix A for a

specific c. However, for private cache, the performance can be predicted

by a direct extension of section 3.4.

In the derivation of theorem 3.4.1, it was shown that the

probability of acceptance for a single resource requested by a pipelined

processor is 1/[cl(T-1)+1, where o and T are the request rate and

resource cycle respectively. Briggs [42) and Emer [60] have derived

similar results. This result is then the probability of acceptance of a

main memory request for the private cache shown in figure 4.12.3(b). The

resource cycle, T, is the block transfer time in this case. However,

the request rate a should be the actual request rate seen by the cache.

This rate can be obtained by applying theorem 4.3.2. Hence the analytic

equations for private cache are the following two equations together with

the CPU utilization equation obtained from theorem 4.3.3:

- A 1

AM r P A(1))A11

11"AM+(- ~A

235

1
and C 1

1+(1-h)[- -1+T"1
PAM

Figure 4.12.4 illustrates the performance comparison between shared

cache and private cache for I =N. Note that the cache cycle time, c, for

private cache is not explicitly shown because it does not pose any

limitation on performance as long as the cache cycle meets the deadline

required by the processor. Again, the topmost line shows the absolute

upper bound, i.e. PA=1, performance for shared cache. As can be seen,

shared cache always performs better than private cache for c=1. For

large A , a significant improvement in performance results for shared

cache, especially for large T. A performance comparison between shared

cache and private cache for a fixed I , i.e. 4, is shown in figure

4.12.5. Note that for shared cache and a given Z , the performance for a

system with cache cycle time k is asymptotically bounded by the

performance for the system with cache cycle time k-1 and N= Z as N

approaches infinity. This asymptotic behavior of increasing N can be

seen by examining the equations listed in Appendix A. Figure 4.12.5

shows that shared cache with c=2 and private cache may result in

comparable performance if a large N is feasible for shared cache.

As a result of improvements in fabrication technology, many LSI

chips, such as microprocessors, now consist of multiple complex

subsystems. However, one of the main cost factors and fabrication

difficulties is pin count. For the third case considered below, it is

[

236

1.0
(I-h)s M .015

Shared(1-h) = .03

Prpvat 1, a=4

A N

c-1, 1-16
c-2, 1-32
c-I, A-8

cf2, L-16
44I

1- .8 4

c-2, Z-48

.6)

Block Transfer Time, T (STUs)

Figure 4.12.4 Performance comparison between shared cache
and private cache for single pipe lined processor
with £I-N and s-n4.

j

J 237

1.
I(1-h) .015

Shared (1-h) -0

Private p 1 s4

.9

0

.7

c=2,N32

.6I I t

8 12 16 20 24 28 32

Block Transfer Time, T (STf))

Figure 4.12.5 Performance comparison between shared cache

and private cache for single pipelined processor

with A-n4 and 9-4.

238

assumed that a pipelined processor and its cache memory modules are

integrated in a single chip for both shared cache and private cache. In

order to reduce the number of pins, a time-multiplexed bus connected

between cache modules and main memory modules is used for both systems.

Figure 4.12.6(a) and figure 4.12.6(b) illustrate the system organizations

for shared cache and private cache, respectively. Obviously, the

organization shown in figure 4.12.6(b) is a special case, i.e. I C1, of

that shown in figure 4.12.3(b). The analytic equations used to predict

performance for the system shown in figure 4.12.3(b) can be directly

applied to predict the performance for the private cache system in this

case.

For the shared cache in this case, it is assumed that the line is

busy for the period starting from detecting a cache miss on this line

until the block transfer operation is complete. Therefore, the effective

block transfer time, denoted as T' actually includes the waiting times

for both main memory request due to access conflict and block transfer

operation. The change of main memory request rate, due to main memory

bus contention, changes the effective block transfer time. Thereby,

changes also occur in the probabilities of acceptance, PA and PAm for a

cache request and for a main memory request, respectively. The analytic

solution is not trivial but can be found for a specific c. As an

illustration, consider osi, the probabilities of acceptance for both a

cache request and a main memory request are given as PA x 1/[1+(1-h)T']

and PAM 1/[Y(T-1)+1] respectively, where T' is the actual (or

effective) block transfer time and a is the actual main memory request

239

W 0

1.O

(b)

Figure 4.12.6 Single pipelined processor with time-
multiplexed main memory bus for (a) shared
cache and (b)private cache.

r -240

rate. Note that T" can be expressed as, (1/PAM - 1)s + T or alternately

as, a(T - 1)s + T. Hence P A / (t+(1-h)(oi(T-1)s + T]). Note also

that the main memory request rate, a , is (1-h)PA because only an

accepted cache request which results in a miss can make a main memory

request. Then the solution of the following equations gives us the

probability of acceptance PA' These equations can be solved numerically

using well known algorithms. A suitable starting value for PA, useful in

iterative solution methods, is t/[A + T(1-h)].

A

P: m

A m +(-h) fro(T-h)s4To

1
Cu1

AAM

Using the value of PA and c from the above equations, we can obtain the

CPU utilization for cache cycle cal as follows.

Cum

I+ (1-h) f-j--
PA

where T ia(T-I)s + T

The corresponding P A chosen from Appendix A is used in the above

equations with T replaced by T' for each c. Figure 4.12.7 and figure

1 241

1.0

S1, k'4
0N

c-14-1

N .8

.7

Sc-2,1-4

8 12 16 20 24 28 32

I Block Transfer Time, T (STtJI)

Figure 4.12.7 Performance comparison between shared cache
and private cache for p-1, s-4, AnN and a singleI time-multiplexed main memnory bus.

24Z

1.0

(1-h)s M .015
Shared

- Shred(1-h) W .03
Private

p 4, s 4
Z -4

.9

0
.8C1,-

-2N-

.7

-2,N-4

.6 t

8 12 16 20 24 28 32

Block Transfer Time, T (STill)

Figure 4.12.8 Performance comparisca between shared
cache and private cache for p-1, a-4, A-4 and
a single time-multiplexed main memory bus.

243

4.12.8 illustrate the performance comparisons between shared cache and

I private cache, both with shared main memory bus, for A N and A = 4

respectively. As can be seen from figures 4.12.4, 4.12.5, 4.12.7 and

4.12.8, for private cache, the performance degradation due to the shared

Imain memory bus is significant when T is large. However, for shared

cache this performance degradation is less significant because (1-h) is

small.

n general, shared cache may perform better than private cache if

(1-hs) is smaller then (1-hp) and A is sufficiently large. Shared cache

is especially suitable for single pipelined processors, as in the second

and the third cases discussed in this section, because high performance

can easily be obtained and no crossbar is required.

1 .

I

I

244

CHAPTER 5

CONCLUSIONS

5.1 Suary of Results

This research develops a simple and flexible system organization for

parallel-pipelined processors with a shared two-level memory hierarchy

and investigates the effect of hit ratio on system performance for

various workloads and cache component parameters as well as the effect of

cache memory access interference on system performance for a variety of

cache memory configurations, cycle characteristics, and processor speeds.

The multicopy of data problems in conventional multiprocessors with

private caches are totally eliminated by the architectural approach of

sharing the caches. The shared cache hit ratio function has been

investigated for a range of component parameters and several combinations

of four real program traces and two operating environments, that is

Independent lnstruction-stream, Independent Rata-stream (IIID) and Zhared

lpstruction-stream, Zpdependent 2ata-stream (SIID) were used for

experimental evaluation by means of simulation. The shared-cache systems

have been studied for two kinds of organizations, namely shared cache

with an implicit lookup table and shared cache with explicit lookup

tables. For each shared cache organization, the effect of cache access

interference on system performance has been investigated for three cache

I
1 245

cycle times c=1, 2, and 3. The complexity of the Markov state diagram

grows exponentially with c. So far, we do not have a general solution of

Jperformance for arbitrary c.
In chapter two, the L-M memory organization was reviewed and cache

memory management strategies were discussed. A set associative mapping

mechanism with a modified LRU replacement algorithm was assumed for

shared-cache systems. The write-through with buffering updating scheme

and the no-write allocation strategy were used in a shared-cache

multiple-stream system. However, a flagged register swap algorithm and

the write allocation strategy were used for multiprocessor systems with

private cache memories. Furthermore, a shared-cache memory interleaved

by sets was introduced.

In chapter three, we developed analytical models for both shared

cache with an implicit lookup table and shared cache with explicit lookup

tables. In addition, an analytic model used to evaluate the main memory

interference for a multiprocessor system with private cache memories was

also developed. These models were oriented toward deriving the

probability of acceptance, PA(c,T,p), of a request. The performance
(

measurement, CPU utilization, was obtained for each model based

on PA(C,TP). The hit ratio was left unevaluated and assumed to be a

specified parameter in developing the analytical models. Since a general

expression for PA(c,T,p) is not known for arbitrary cycle time, c, we

have obtained upper and lower bounds on PA(cT,p) for the implicit lookup

table model, but were unable to do so for the explicit lookup table

I model.

N

246

In chapter four, simulation experiments have been used to

investigate the effect of various workloads and component parameters on

hit ratio and to validate the analytic models. We demonstrated that the

simulation results were not significantly different from the analytic

predictions for reasonably high performance systems. This justifies the

assumption that the discarding of rejected requests, for analytical

purposes, does not necessitate a significant deviation of the analytic

model from reality for reasonably high performance systems. We also

demonstrated that the hit ratio deviations due to cache memory

interference are insignificant. This justifies the assumption that the

hit ratio is constant with respect to changes in access conflict.

Experiments showed that shared cache is more sensitive to set sizes

than private cache. We observed in our simulation experiments that

write-through is always superior to write-back. In most cases, dynamic

space sharing was better than fixed space allocation for the MID

operating environment. The most significant improvements in miss ratio

by shared cache over private cache occurred for the SlID operating

environment.

We also investigated the effect of memory interference for a variety

of parameters on system performance. Since the analytic predictions for

shared cache with an implicit lookup table and explicit lookup tables are

almost the same for the range of parameters we studied, the discussion

was restricted only to shared cache with an implicit lookup table. We

found that for a very large number of cache memory modules, N, the effect

of cache cycle, c, is insignificant for shared cache with an implicit

247I
lookup table.I

There is generally less payoff to increasing N for large I and

I small p, and for small I and large p. The most significant payoff to

increasing N occurs when I is close to p.

We showed that systems result in very poor performance for I C p.

I For I mp, the performance is sensitive to small variations in 1, p, T,

and N. In order to obtain reasonable performance, I >p is necessary.

The effect of cycle characteristics on performance is small when A

and N are sufficiently large. We have shown that for small Z and N, the

I effect of cache cycle, c, is significant.

The processor speed is another important factor that determines the

system throughput. For both a higher request rate and a uniformly faster

processor/memory, i.e. fixed (c,T), assumptions, an increase in the

processor speed increases the throughput. For a constant request rate

assumption, an increase in the processor speed decreases the throughput

slightly for large A but increases the throughput for small

We have shown, for sufficiently large 2, that system performance is

critically dependent on the miss penalty, (1-h)T". One example shows

j that maximum performance may not be produced for the block size which

corresponds to the minimum value of miss ratio.I
A simple model has been developed for processors with load through

capability. We illustrated that load through is significantly better

than nonload-through for small h and a large difference between T and theI
£|

248

main memory cycle.

Performance comparisons between shared cache and private cache were

carried out for several organizations. We showed that shared cache with

write-through is especially suitable for single pipelined processor

systems.

In general, since shared space could be equally divided amoung the

processes, shared cache under an effective management policy should yield

a hit ratio at least as high as that for private cache. However, it was

shown in section 4.3 that shared cache might result in a higher miss

ratio for an LRU replacement policy per set. More research on dynamic

space sharing and the interaction between streams is required to derive

an effective management policy for shared cache.

If shared cache gives a higher hit ratio than private cache, then

shared cache results in higher system performance for those

configurations that keep the access conflict at low levels. Note that

the overhead caused by handling the multicopy of data problem has not

been considered for private cache systems. The performance predictions

for private cache are thus optimistic.

If both shared cache and private cache have the same cache

organization, then private cache is more expensive than shared cache

because a "store controller" and a "central directory" [16) have to be

provided in order to solve the multicopy of data problem. This cost

difference can be invested in shared cache to reduce access conflict and

enhance system performance. In addition to possible higher performance,

71 - 7 ..

I
249

shared cache systems have the following advantages over private cache

I systems:

I
1(1) no multicopy of data problem,

(2) interprocessor communication can be implemented in the cache,

and

(3) design is simpler.

5.2 Suggestions for Further Research

As mentioned before, in order to derive an effective management

policy for shared cache, more research on policies for management of

dynamic space sharing should be done. Shared-cache systems with separate

caches for instructions and data may be interesting. In practice, space

allocation for data and instructions in such computer systems may be

complex.

The performance evaluation of pipelined processors with both load

through and instruction prefetch capabilities is important. Both load

through and prefetch can be carried out simultaneously if the bandwidth

for load through is greater than one. In this case, not only the

read-mss instructions but also the sequential instructions following

Lthose read-miss instructions will be loaded from main memory directly to

processors.

A possible extension of this thesis may be directed towards

[

250

developing a model for general memory hierarchies. It may be possible to

characterize the access time to a memory level in terms of the access

times to all the higher level memories. A hierarchical model would be

very useful because any later change of technology for some memory level

would require that only the model for that level be modified.

Finally, the effective buffer sizes for both write-through and

write-back should be investigated. Software developments, such as

microprogramming and resource allocation, for shared cache systems should

also be studied.

- -- : ,'...m _ ''.9 '-C "' i -
-

-.'mIl.-

251

I APPENDIX A

A Sumary for Shared Cache with An Implicit Lookup TableI

1. P 1, .p + pq(c-1) + Tpq(l-h)

I

2. (c, T) = (1, T), AA Lp + Tpq(1-h)

3. T (2,T), gN
3. (c, T) P (2, T), A pN + Npq(T+1)(1-h) + pqlh

7 £N(1-P1) (N-qh)

4. (c, T) - (3, T), = AixA
I

Iwhere 4 = (A+2q+Tq-Thq-2hq)N 2 + (3qhl-h 2 q24hq 2+Thq 2-Th2 q 2)N

+ h2 q + hAq2 ,

q - 1-(1-1/A) p , and

~(1.Pl) - f1-(1-1/1,)PIA/P.

5. CPU Utilization, Cu - 1/PA + (1-)T,

i IL :. " ," ,-+ (-h) " :" ;2.-

252

APPENDIX B

A Summary for Shared Cache with Explicit Lookup Tables

Sq
.Ah PAre = p + phq(c-1) + pq(T-l)(l-hd)

h -hd

Zq
2. (c, T) - (1, T), 7Ah- +

'A Am 7p pq(T-1)(l-h,)

h hd
Id

AqN
3. (c, T) (2, T), PAh - ANp + pq(T-l)(1-hd)(N - q(m-l)h d + pqhd A

SN - Aq(m-l)h
d _

PAm AN+ q(T-l)(l-hd)[N - q(m-l)hd] + qhdI

-(l-hd)(N-Nqh d + Aqhd)

£N(1-P I) (N-Iiq)
4. (c, T) i(3, T) DAhi "

Ph -4
P~m AY1lY 2

(1-hd)(N - Nqhd + /qhd)(N - Nqhd + 2 4lh d)

Nhd(N + tqhd)

where A - AN(N + hdq) + q(T-1)(1-hd)Y1Y2 + 2qhd(N + hdq),Y1 - (N-mhdq + hdq), Y2 a (N - mhdq + 2hdq)9

q 1-(1-1/A) p and (l-P1) [1-(1-1//,)P]A/p.

* h static hit ratio; hd dynamic hit ratio. J

.............

1 253

APPENDIX B
N(continued)

1*1

S5. CPU Utilization, Cu h hlpAh + (1-h)(I/P Am +T")

I.

I.!

L

254

REFERENCES

(1) Chen, T. C., "Parallelism, Pipelining, and Computer Efficiency",
Computer Design, pp. 365-372, January 1971.

(2) Bello C. G., and Wulf, W. A., "C.mp-A Multiuiniprooessors," AFIPS
Proc. FJCC, Vol. 141, Part II, pp. 765-777, 1972.

(3) Davidson, E. S., "A Multiple Stream Microprocessor Prototype
System: AMP-1", The 7th Annual Symposium on Computer Architecture
pp. 9-16, May 1980.

(4I) Flynn, M. J., "Very High-Speed Computing Systems", Proc. of the
IEEE, Vol. 514, No. 12, pp. 1901-1909, December 1966.

(5) Barnes, G. H., et al., "The ILLIAC IV Computer", IEEE Trans.
Comput., Vol. C-17, No. 8, pp. 746-757, August 1968.

(6) atcher, K. E., "STARAN Parallel Proessor System Hardware," AFIPS
Proc. NCC, Vol. 43, pp. 405-410, 1974.

(7) Crane, B. A., et al., "PEPE Computer Architecture", IEEE COMPCON,
pp. 57-60, 1972.

(8) Anderson, D. W., et al., "The IBM System/360 Model 91: Machine
Philosophy and Instruction Handling", IBM J. of Res. and Dev..
pp. 8-24, January 1967.

(9) Amdahl 470 V/6 Machine Reference Manual, Amdahl Corporation,
Sunnyvale, Calif., 1976.

(10) Hintz, R. G., and Tate, D. P., "Control Data STAR-100 Processor
Design", Proc. COMPCON Fall 72, pp. 1-4, September 1972.

(11) Watson, W. J., "The TI ASC-A Highly Modular and Flexible Computer
Architecture", AFIPS Proc. FJCC, Vol. 41, Part I, pp. 221-228,
1972.

(12) Russell, R. M., "The CRAY-1 Computer System", Commun. ACM,
Vol. 21, No. 1, pp. 63-72, January 1978.

IJ
255

(13) Shar, L. E., and Davidson, E. S., "A Multiminiprocessor System
Implemented Through Pipelining", Computer, Vol. 7, No. 2, pp. 42-51,
February 1974.

1 (14) Larson, A. G., and Davidson, E. S., "Cost-Effective Design of
Special-Purpose Processor: A Fast Fourier Transform Case Study",
Proc. 11th Annual Allerton Conf. on Circuit and System Theory,

I pp. 547-557, October 1973.

(15) Kaminsky, W. J., and Davidson, E. S., "Developing A Multiple -
Instruction - Stream Single-Chip Processor "9 Computer, pp. 66-76,
December 1979.

(16) Tang, C. K., "Cache System Design in the Tightly Coupled

Multiprocessor System", AFIPS Proc. NCC, Vol. 45, pp. 749-753,
1976.

(17) Censier, L. M., and Feautrier, P., "A New Solution to Coherence
Problems in Multicache Systems", IEEE Trans. Comput., Vol. C-27,
No. 12, pp. 1112-1118, December 1978-.

(18) Davidson, E. S., "Effective Control for Pipelined Computers", Proc.

COIPCON Spring 75, pp. 181-184, February 1975.

(19) Strecker, W. D., "An Analysis of the Instruction Execution Rate in
.Certain Computer Structures", Ph.D. Thesis, Carnegie-Mellon Univ.,

Pittsburgh, Pa., 1970.

(20) Weller, D. L., and Davidson, E. S., "Optimal Searching Algorithms
for Parallel - Pipelined Computers", Spring-Verlag Lecture Notes,

T No. 24, pp. 90-98, August 1975.

(21) Smith, A. J., "Sequentiality and Prefetohing in Data Base Systems",
SCM Trans. on Data Base Sys., pp. 223-247, September 1978.

(22) Rau, B. R., and Rossmann, G. E., "The Effect or Instruction Fetch
Strategies upon the Performance of Pipelined Instruction Units",
Fourth Annual Symposiu n Computer Architecture, pp. 80-89, March1 1977.

(23) Mattson, R. L., et al., "Evaluation Techniques for Storage[Hierarchies", IBM SYst. JL, pp. 78-117, No. 2, 1970.

I

256

(24) Denning, P. J., "The Working Set Model for Program Behavior",
Commun. ACM, Vol. 11, No. 5, PP. 323-333, May 1968.

(25) Gsohwind, H. W., and McCluskey, E. J., Design of Digital
Computers, Springer - Verlag, 1975.

(26) Foster, C. C., Content Addressable Parallel Processors, Van
Nostrand Reinhold, 1976.

(27) Lamb, S., "An Add-In Recognition Memory for S-100 Bus Microcomputers
- Part 2: Structure and Specifications", Computer Design,
pp. 162-168, September 1978.

(28) Belady, L. A., and Kuehner, C. J., "Dynamic Space - Sharing in
Computer Systems", CoiMun. AM., Vol. 12, No. 5, pp. 282-288, May
1969.

(29) Coffman, E. G., and Ryan, T. A., "A Study of Storage Partitioning
Using a Mathematical Model of Locality", Comun. ACM, Vol. 15,
No. 3, pp. 185-190, March 1972.

(30) Juan Rodriguez-Rosell, "Empirical Working Set Behavior", Commun.
ACM, Vol. 16, No. 9, pp. 556-560, September 1973.

(31) Hendrik Vantilborgh, "Working Set Dynamics", Modelling and
Performance Evaluation of Computer Systems, Edited by E. Gelenbe,
North - Holland Pub. Co., pp. 377-387t 1976.

(32) Hellerman, H., Digital Computer System Principles, New York:
McGraw-Hill, pp. 228-229, 1967.

(33) Knuth, D. E., and Rao, 0. S., "Activity in Interleaved Memory,"
IEEE Trans. Comput., Vol. C-24, No. 9, pp. 943-944, September 1975.

(34) Burnett, 0. J., and Coffman, E. G., "A Study of Interleaved
Memory", AIPS Proc. SJCC, Vol. 36, pp. 467-474, 1970.

(35) Burnett, G. J., and Coffman, E. 0., "Analysis of Interleaved
Memory System Using Blockage Buffers", Comun. AC, Vol. 18,
No. 2, pp. 91-95, February 1975. ii!

3 257

(36) Skinner, C., and Asher, J., "Effect of Storage Contention on
Performance", IBM Syst. J., Vol. 8, No. 4, pp. 319-333, 1969.

(37) Ravi, C. V., "On the Bandwidth and Interference in
Multiprocessors", IEEE Trans. Comput., Vol. C-21, pp. 899-901,
August 1972.

1 (38) Bhandarkar, D. P., "Analysis of Memory Interference in
Multiprocessors", IEEE Trans. Comput., Vol. C-24, pp.897-908,JSeptember 1975.

(39) Sastry, K. V., and Kain, R. Y., "On the Performance of Certain
Multiprocessor Computer Organizations", IEEE Trans. Comput.,

Vol. C-24, pp. 1066-1074, Nov. 1975.

(40) Baskett, F., and Smith, A., "Interference in Multiprocessor Computer
Systems with Interleaved Memory", Comun. ACM., Vol. 19, No. 6,
pp.327-334, June 1976.

(41) Briggs, F. A., and Davidson, E. S., "Organization of Semiconductor
Memories for Parallel - Pipelined Processors", IEEE Trans. Comput.,
Vol. C-26, pp. 162-169, February 1977.

(42) Briggs, F. A., "Memory Organizations and Their Effectiveness for
Multiprocessing Computers", Coordinated Science Lab., Report
No. R-768, Univ. of Ill., May 1977.

(43) Bloom, L., Cohen, M., and Porter, S., "Considerations in the Design
of a Computer with High Logic - to - Memory Speed Ratio", Proc.
Gigacycle Computing Systems, January 1962; AIEE Special Publ.,
S-136, pp. 53-63.

(44) Liptay, J. S., "Structural Aspects of the System/360 Model 85, Part
" II: The Cache", IBM Syst. J., Vol. 7, PP. 15-21, 1968.I.

(45) Strecker, W. D., "Cache Memories for PDP-11 Family Computers", The
. 3rd Annual Symposium on Computer Architecture, pp. 155-158, January

1976.

(46) Kaplan, K. R., and Winder, R. 0., "Cache Based Computer
Systems", Computer, pp. 30-36, March 1973.

Ui

258

(47) Meade, R, M., "On Memory System Design", AFIPS Proc. FJCC, Vol. 37,

pp. 33-43,1970.

(48) Sisson, S. S., and Flynn, M. J., " Addressing Patterns and Memory
Handling Algorithms", AFIPS Proc. FJCC, Vol. 33, Part 2,
pp. 957-967. 1968.

(49) Smith, A. J., "A Comparative Study of Set Associative Memory
Mapping Algorithms and Their Use for Cache and Main Memory", IEEE
Trans. Software Eng., Vol. SE-4, No. 2, pp. 121-130, March 1978.-

(50) Rao, G. S., "Performance Analysis of Cache Memories", J. ACM,
Vol. 25, No. 3, pp. 378-395, July 1978.

(51) Gibson, D. H., "Considerations in Block - Oriented Systems Design",
AFIPS Proc. SJCC, Vol. 30, pp. 75-80, 1967.

(52) Conti, C. J., "Concepts for Buffer Storage", IEEE Comput. Group
News, Vol. 2, pp. 9-13, March 1969.

(53) Belady, L. A., "A Study of Replacement Algorithms for Virtual
Storage Computer", IBM Sst. 3., Vol. 5, pp. 78-101, 1966.

(54) Belady, L. A., Nelson, R. A., and Shedler, G. S., "An anomaly in
the Space - Time Characteristics of Certain Programs Running in
Paging Machines", Comeun. ACM, Vol. 12, No. 6, pp. 349-353, June
1969.

(55) Bell, J., et al., " An Investigation of Alternative Cache
Organizations", IEE Trans. Comput., Vol. C-23, No. 4, pp. 316-351,
April 1974.

(56) Smith, A. J., *Characterizing the Storage Process and Its Effect on
the Update of Main Memory by Write Through", Commun. ACM, Vol. 26,
No. 1, pp. 6-27, January 1979.

(57) Pohm, A. V., et al., " The Cost and Performance Tradeoffs of
Buffered Memories", Pros. of the IEEE, Vol. 63, No. 8,
pp. 1129-1135, August 1975.

__ __ __ __ __ __ __ __ __

259

(58) Erhan Ginlar, Introduction to Stochastic Processes, Prentice - Hall,'I Inc., 1975.

(59) Chang, D., et al., "On the Effective Bandwidth of Parallel
Memories", IEEE Trans. Comput., Vol. C-26, No. 5, pp. 480-490, May1977.

(60) Emer, J. S., "Shared Resources for Multiple Instruction Stream
Pipelined Processors", Coordinated Science Lab., Report No. R-838,

1Univ. of I1l., July 1979.

(61) Birtwistle, G. M., et al., SIMULA Begin, Van Nostrand Reinhold,
Second Edition, 1979.

(62) Easton, M. C., and Fagin, R., "Cold-Start vs. Warm-Start Miss

Ratios", Commun. ACM, Vol. 21, No. 10, pp. 866-872, October 1978.

(63) Patel, J. H., Private Communication.

(64) Chow, C. K., "On Optimization of Storage Hierarchies", IBM J. Res.
Dev., pp. 194-203, May 1974.

(65) Welch, T. A., "Memory Hierarchy Configuration Analysis", IEEE
Trans. Comput., Vol. C-27, No. 5, pp. 408-417, May 1978.

I

!i
|i I

260

VITA

Chi-Chung Yeh was born in Taiwan, Republic of China, on June 12,

1950. He received a B. Eng. degree in Electronic Engineering from

Chung Yuan Christian College for Science and Engineering, Taiwan,

Republic of China, in 1972.

He received an M.S. degree in Electrical Engineering from

Northwestern University, Evanston, Illinois, in 1975 and an M.S. degree

in Computer Science from the University of Illinois at Urbana-Champaign,

in 1977.

From 1978 to 1980, he was a graduate assistant at the Coordinated

Science Laboratory of the University of Illinois at Urbana-Champaign.

I_ I

